Câu hỏi: Tìm tất cả m để hệ phương trình sau có nghiệm không tầm thường: \(\left\{ \begin{array}{l} x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}z{\rm{ }} + {\rm{ }}t{\rm{ }} = {\rm{ }}0{\rm{ }}\\ 2x{\rm{ }} + {\rm{ }}3y{\rm{ }} + {\rm{ }}4z{\rm{ }} - {\rm{ }}t{\rm{ }} = {\rm{ }}0{\rm{ }}\\ 3x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2z{\rm{ }} + {\rm{ }}5t{\rm{ }} = {\rm{ }}0{\rm{ }}\\ 4x{\rm{ }} + {\rm{ }}6y{\rm{ }} + {\rm{ }}3z{\rm{ }} + {\rm{ }}mt{\rm{ }} = {\rm{ }}0 \end{array} \right.\)
A. \(m = \frac{{14}}{3}\)
B. m = 3
C. m = 5
D. \(m = \frac{{12}}{3}\)
Câu 1: Trong R3 cho họ M = {(1, 2, 3), (2, 4, 6), (3, 4, m)}. Với giá trị nào của m thì M sinh ra không gian có chiều là 3?
A. \(\forall m\)
B. \(\not \exists m\)
C. \(m \ne 3\)
D. \(m \ne 1\)
30/08/2021 2 Lượt xem
Câu 2: Tìm tất cả m để hệ phương trình sau là hệ Cramer \(\left\{ \begin{array}{l} 2x{\rm{ }} + {\rm{ }}3y{\rm{ }} + {\rm{ }}mz{\rm{ }} = {\rm{ }}3{\rm{ }}\\ 3x{\rm{ }} + {\rm{ }}2y{\rm{ }} - {\rm{ }}1{\rm{ }}z{\rm{ }} = {\rm{ }} - 3{\rm{ }}\\ x{\rm{ }} + {\rm{ }}2y{\rm{ }} - {\rm{ }}3z{\rm{ }} = {\rm{ }}0 \end{array} \right.\)
A. \(m \ne -2\)
B. \(m \ne 0\)
C. \(m \ne -4\)
D. 3 câu kia đều sai
30/08/2021 2 Lượt xem
Câu 3: Tìm tất cả m để hệ phương trình sau vô số nghiệm \(\left\{ \begin{array}{l} x + y + 2z = 2{\rm{ }}\\ 2x + y + 3z = 5{\rm{ }}\\ 3x + my + 7z = m + 2 \end{array} \right.\)
A. 3 câu kia đều sai
B. \(m \ne 4\)
C. \(m \ne 3\)
D. \(\not \exists m\)
30/08/2021 2 Lượt xem
Câu 4: Cho họ vecto M = {x, y, z, t} có hạng bằng 3. Khẳng định nào sau đây luôn đúng?
A. x, y, z độc lập tuyến tính
B. M sinh ra không gian 3 chiều
C. M độc lập tuyến tính
D. x là tổ hợp tuyến tính {y, z, t}.
30/08/2021 4 Lượt xem
Câu 5: Tính A= \(\left| {\begin{array}{*{20}{c}} 1&2&{ - 1}&3\\ 0&1&0&1\\ 0&2&0&4\\ 3&1&5&7 \end{array}} \right|\)
A. -16
B. 16
C. 32
D. -32
30/08/2021 2 Lượt xem
Câu 6: Cho M = {x, y, z} là tập sinh của không gian vecto thực V. Khẳng định nào sau đây luôn đúng?
A. {x, y, x + y + z} sinh ra V
B. {x,2y, x + y} sinh ra V
C. {2x, 3y, 4z} sinh ra V
D. Hạng của họ {x, x, z} bằng 3
30/08/2021 3 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 3
- 15 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
68 người đang thi
- 584
- 18
- 25
-
85 người đang thi
- 420
- 10
- 25
-
61 người đang thi
- 416
- 7
- 25
-
24 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận