Câu hỏi: Tìm số nguyên dương n nhỏ nhất để \({( - 1 + i\sqrt 3 )^n}\) là một số thực:
A. n = 1
B. Không tồn tại n
C. n = 3
D. n = 6.
Câu 1: Cho hệ phương trình tuyến tính AX = B (1) với \({A_{mxn}}(m > n),\overline A = (A\left| B \right.)\) . Ta có:
A. Tập nghiệm của (1) là không gian con của Rn
B. \(R(A) \ge R(\overline A )\)
C. Hệ vô nghiệm
D. Các câu kia đều sai
30/08/2021 3 Lượt xem
Câu 2: Cho A là ma trận vuông cấp n với \(n \ge 2\)
A. |3A| = 3 |A|
B. |-A| = |A|
C. Nếu |A| = 0 thì có 1 vectơ cột của A là tổ hợp tuyến tính của các vectơ cột còn lại.
D. Các câu kia đều sai
30/08/2021 4 Lượt xem
Câu 3: Cho A= \(\left( {\begin{array}{*{20}{c}} 1&0&0\\ { - 3}&1&0\\ 2&1&3 \end{array}} \right),B = \left( {\begin{array}{*{20}{c}} 2&{ - 1}&3\\ 0&1&4\\ 0&0&1 \end{array}} \right)\) .Tính det(3AB)
A. 162
B. 18
C. 6
D. 20
30/08/2021 3 Lượt xem
Câu 4: Tập hợp tất cả các số phức |z + 2i| = |z - 2i| trong mặt phẳng phức là:
A. Trục 0x
B. Đường tròn
C. Trục 0y
D. Nữa mặt phẳng
30/08/2021 3 Lượt xem
Câu 5: Cho hệ phương trình tuyến tính \(\left\{ \begin{array}{l} {x_1} + {x_2} + 2{x_3} + 3{x_4} = 0\\ {x_1} + {x_2} + 3{x_3} + 5{x_4} = 0 \end{array} \right.\) . Hệ vector nào sau đây là hệ nghiệm cơ bản của hệ.
A. V1= (1,0,-2,1)
B. V1 = (1,0,-2,1), V2 = (-2,2,0,0), V3 = (0,1,-2,1)
C. V1= (1,0,-2,1), V2 = (1,1,1,0)
D. V1 = (1,0,-2,1), V2 = (0,1,-2,1)
30/08/2021 2 Lượt xem
Câu 6: Tìm số nguyên dương n nhỏ nhất để số \(z = {(\frac{{ - 1 + i\sqrt 3 }}{{1 + i}})^n}\) là một số thực:
A. n = 5.
B. n = 6.
C. n = 3.
D. n = 12.
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 10
- 9 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.0K
- 66
- 25
-
46 người đang thi
- 565
- 18
- 25
-
39 người đang thi
- 475
- 15
- 25
-
68 người đang thi
- 402
- 10
- 25
-
25 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận