Câu hỏi: Tập hợp tất cả các số phức \(z = a(\cos 2 + i\sin 2);a \in R\) trong mặt phẳng phức là:

191 Lượt xem
30/08/2021
4.0 10 Đánh giá

A. Đường thẳng

B. Đường tròn

C. Nữa đường tròn

D. 3 câu trên đều sai

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Tập hợp tất cả các số phức |z + 2i| = |z - 2i| trong mặt phẳng phức là:

A. Trục 0x

B. Đường tròn

C. Trục 0y

D. Nữa mặt phẳng

Xem đáp án

30/08/2021 3 Lượt xem

Câu 3: Cho hệ phương trình tuyến tính Amxn X = B với R(A)= m. Khi đó:

A. Hệ có nghiệm

B. Hệ vô nghiệm

C. Hệ có vô số nghiệm

D. Hệ có nghiệm duy nhất 

Xem đáp án

30/08/2021 5 Lượt xem

Câu 4: Tìm argument \(\varphi \) của số phức \(z = \frac{{1 - i\sqrt 3 }}{{ - 1 + i}}\)

A. \(\varphi = \frac{{ - 7\pi }}{{12}}\)

B. \(\varphi = \frac{{ \pi }}{{4}}\)

C. \(\varphi = \frac{{ - 13\pi }}{{12}}\)

D. \(\varphi = \frac{{ \pi }}{{12}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Cho A, B là các ma trận vuông cùng cấp và khả nghịch, đặt \(C = \left( {\frac{3}{5}{A^T}} \right)\left( {\frac{7}{4}B} \right)\) . Khi đó:

A. \({C^{ - 1}} = \frac{{21}}{{20}}{\left( {{A^T}} \right)^{ - 1}}.{B^{ - 1}}\)

B. \({C^{ - 1}} = \frac{{21}}{{20}}{B^{ - 1}}.{\left( {{A^{ - 1}}} \right)^T}\)

C. \({C^{ - 1}} = \frac{{21}}{{20}}{\left( {{B^T}} \right)^{ - 1}}.{A^{ - 1}}\)

D. \({C^{ - 1}} = \frac{{20}}{{21}}{B^{ - 1}}.{\left( {{A^{ - 1}}} \right)^T}\)

Xem đáp án

30/08/2021 4 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 10
Thông tin thêm
  • 9 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên