Câu hỏi: Hệ vectơ nào sau đây không phải là không gian con của R3:

287 Lượt xem
30/08/2021
3.5 6 Đánh giá

A. \(V = \left\{ {(x - y,y,0)/x,y \in R} \right\}\)

B. \(V = \left\{ {(x - y + z,z - y,x)/x,y,z \in R} \right\}\)

C. V gồm tất cả các vectơ được sinh ra bởi hệ \(\left\{ {(1,2,1),( - 2,0,1),(1,2, - 3),(3, - 2,1)} \right\}\)

D. \(V = \left\{ {(x,y,xy)/x,y \in R} \right\}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho hệ phương trình tuyến tính Amxn X = B với R(A)= m. Khi đó:

A. Hệ có nghiệm

B. Hệ vô nghiệm

C. Hệ có vô số nghiệm

D. Hệ có nghiệm duy nhất 

Xem đáp án

30/08/2021 5 Lượt xem

Câu 5: Cho A B, là hai ma trận vuông cấp 5. Giả sử dòng 2 của A bằng 0 và cột 3 của B bằng 0. Đặt C = AB, khi đó ta có

A. dòng 2 và cột 2 của C bằng 0 

B. dòng 3 và cột 3 của C bằng 0

C. dòng 2 và cột 3 của C bằng 0 

D. dòng 3 và cột 2 của C bằng 0

Xem đáp án

30/08/2021 7 Lượt xem

Câu 6: Cho A, B là các ma trận vuông cùng cấp và khả nghịch, đặt \(C = \left( {\frac{3}{5}{A^T}} \right)\left( {\frac{7}{4}B} \right)\) . Khi đó:

A. \({C^{ - 1}} = \frac{{21}}{{20}}{\left( {{A^T}} \right)^{ - 1}}.{B^{ - 1}}\)

B. \({C^{ - 1}} = \frac{{21}}{{20}}{B^{ - 1}}.{\left( {{A^{ - 1}}} \right)^T}\)

C. \({C^{ - 1}} = \frac{{21}}{{20}}{\left( {{B^T}} \right)^{ - 1}}.{A^{ - 1}}\)

D. \({C^{ - 1}} = \frac{{20}}{{21}}{B^{ - 1}}.{\left( {{A^{ - 1}}} \right)^T}\)

Xem đáp án

30/08/2021 4 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 10
Thông tin thêm
  • 9 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên