Câu hỏi: Tìm argument \(\varphi \) của số phức \(z = \frac{{1 - i\sqrt 3 }}{{ - 1 + i}}\)
A. \(\varphi = \frac{{ - 7\pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{4}}\)
C. \(\varphi = \frac{{ - 13\pi }}{{12}}\)
D. \(\varphi = \frac{{ \pi }}{{12}}\)
Câu 1: Tìm số nguyên dương n nhỏ nhất để \({( - 1 + i\sqrt 3 )^n}\) là một số thực:
A. n = 1
B. Không tồn tại n
C. n = 3
D. n = 6.
30/08/2021 2 Lượt xem
Câu 2: Cho A B, là hai ma trận vuông cấp 5. Giả sử dòng 2 của A bằng 0 và cột 3 của B bằng 0. Đặt C = AB, khi đó ta có
A. dòng 2 và cột 2 của C bằng 0
B. dòng 3 và cột 3 của C bằng 0
C. dòng 2 và cột 3 của C bằng 0
D. dòng 3 và cột 2 của C bằng 0
30/08/2021 7 Lượt xem
Câu 3: Tập hợp tất cả các số phức \(z = a(\cos 2 + i\sin 2);a \in R\) trong mặt phẳng phức là:
A. Đường thẳng
B. Đường tròn
C. Nữa đường tròn
D. 3 câu trên đều sai
30/08/2021 3 Lượt xem
Câu 4: Tìm số nguyên dương n nhỏ nhất để (-1 + i)n là một số thực:
A. n = 3
B. n = 4
C. n = 1
D. n = 6
30/08/2021 3 Lượt xem
Câu 5: Tìm số nguyên dương n nhỏ nhất để số \(z = {( - \sqrt 3 + i)^n}\) là một số thuần ảo:
A. n = 2
B. n = 3
C. n = 12
D. n = 6.
30/08/2021 3 Lượt xem
Câu 6: Tìm số nguyên dương n nhỏ nhất để số \(z = {(\frac{{ - 1 + i\sqrt 3 }}{{1 + i}})^n}\) là một số thực:
A. n = 5.
B. n = 6.
C. n = 3.
D. n = 12.
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 10
- 9 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
39 người đang thi
- 584
- 18
- 25
-
98 người đang thi
- 495
- 15
- 25
-
22 người đang thi
- 420
- 10
- 25
-
70 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận