Câu hỏi: Nếu biến ngẫu nhiên gốc tuân theo phân phối nhị thức \(X \sim B\left( {1,p} \right)\) thì \(n\overline X\) tuân theo phân phối?

166 Lượt xem
30/08/2021
3.9 8 Đánh giá

A. \(n\overline X \sim N\left( {0,1} \right)\)

B. \(n\overline X \sim B\left( {n,p} \right)\)

C. \(n\overline X \sim N\left( {n,p} \right)\)

D. \(n\overline X \sim B\left( {0,1} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Có người nói tỷ lệ sản phẩm xấu của nhà máy tối đa là 7%. Kiểm tra 100 sản phẩm thấy 8 phế phẩm. Với mức ý nghĩa = 0,05, hãy kết luận ý kiến trên. Giá trị quan sát (Kiểm định thực nghiệm) nào là đúng dưới đây?

A. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,07)\sqrt {100} }}{{\sqrt {0,03.0,97} }}\)

B. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)

C. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)

D. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,04)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) đã biết) là:

A. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }};\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)

B. \(\left( { - \infty ;\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)

C. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}; + \infty } \right)\)

D. \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án

30/08/2021 5 Lượt xem

Câu 4: Cho biết ý nghĩa của \({r_{XY}} = - 0,56\)

A. X, Y tương quan nghịch lỏng lẻo

B. X, Y tương quan thuận chặt chẽ

C. X, Y tương quan nghịch chặt chẽ

D. X, Y tương quan thuận lỏng lẻo

Xem đáp án

30/08/2021 3 Lượt xem

Câu 5: Tìm hệ số của x12  trong khai triển (2x - x2 )10 

A. \(\mathop C\nolimits_{10}^8 \)

B. \(\mathop C\nolimits_{10}^2 \)

C. \(\mathop C\nolimits_{10}^2 \mathop 2\nolimits^8 \)

D. \(\mathop { - C}\nolimits_{10}^2 \mathop 2\nolimits^8 \)

Xem đáp án

30/08/2021 3 Lượt xem

Câu 6: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) chưa biết) là:

A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)

B. \(\left( { - \infty ;\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)

C. \(\left( {\frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}; + \infty } \right)\)

D. \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
Thông tin thêm
  • 0 Lượt thi
  • 40 Phút
  • 30 Câu hỏi
  • Sinh viên