Câu hỏi: Đội văn nghệ của một nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Cần chọn ngẫu nhiên 5 học sinh từ đội văn nghệ đó để biểu diễn trong lễ bế giảng. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp 12A?
A. 80
B. 78
C. 76
D. 98
Câu 1: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho tỷ lệ là:
A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)
B. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }};\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)
C. \(\left( {f - \frac{{\sqrt {f\left( {1 - f} \right)} }}{{\sqrt n }}{u_{\alpha /2}};f + \frac{{\sqrt {f\left( {1 - f} \right)} }}{{\sqrt n }}{u_{\alpha /2}}} \right)\)
D. \(\left( {f - \frac{{\sqrt {f\left( {1 + f} \right)} }}{{\sqrt n }}{u_{\alpha /2}};f + \frac{{\sqrt {f\left( {1 + f} \right)} }}{{\sqrt n }}{u_{\alpha /2}}} \right)\)
30/08/2021 2 Lượt xem
Câu 2: Có người nói tỷ lệ sản phẩm xấu của nhà máy tối đa là 7%. Kiểm tra 100 sản phẩm thấy 8 phế phẩm. Với mức ý nghĩa = 0,05, hãy kết luận ý kiến trên. Giá trị quan sát (Kiểm định thực nghiệm) nào là đúng dưới đây?
A. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,07)\sqrt {100} }}{{\sqrt {0,03.0,97} }}\)
B. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
C. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
D. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,04)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
30/08/2021 2 Lượt xem
Câu 3: Đẳng thức nào sau đây là đúng?
A. \(1 + 2 + 3 + 4 + .... + n = \mathop C\nolimits_{n + 1}^2\)
B. \(1 + 2 + 3 + 4 + .... + n = \mathop A\nolimits_{n + 1}^2 \)
C. \(1 + 2 + 3 + 4 + .... + n = \mathop C\nolimits_n^1 + \mathop C\nolimits_n^2 + .... + \mathop C\nolimits_n^n \)
D. \(1 + 2 + 3 + 4 + .... + n = \mathop A\nolimits_n^1 + \mathop A\nolimits_n^2 + .... + \mathop A\nolimits_n^n \)
30/08/2021 2 Lượt xem
Câu 4: Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí:
A. \(\frac{{253}}{{1152}}\)
B. \(\frac{{899}}{{1152}}\)
C. \(\frac{4}{7}\)
D. \(\frac{{26}}{{35}}\)
30/08/2021 6 Lượt xem
Câu 5: Trong bài toán kiểm định cho phương sai của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:{\sigma ^2} = \sigma _0^2\\ {H_1}:{\sigma ^2} \ne \sigma _0^2 \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\left( {\overline X - {\mu _0}} \right)}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
Câu 6: Trong bài toán kiểm định giả thuyết cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu \ne {\mu _0} \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 4 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
- 0 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 440
- 14
- 30
-
29 người đang thi
- 322
- 1
- 30
-
43 người đang thi
- 379
- 3
- 30
-
81 người đang thi
- 350
- 5
- 30
-
85 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận