Câu hỏi: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) đã biết) là:

110 Lượt xem
30/08/2021
3.8 8 Đánh giá

A. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }};\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)

B. \(\left( { - \infty ;\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)

C. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}; + \infty } \right)\)

D. \(\left( { - \infty ; + \infty } \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho phương sai của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (a chưa biết) là:

A. \(\frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{\alpha /2,n}^2}} < {\sigma ^2} < \frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{1 - \alpha /2,n}^2}}\)

B. \(\frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{\alpha /2,n - 1}^2}} < {\sigma ^2} < \frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{1 - \alpha /2,n - 1}^2}}\)

C. \(\frac{{nS{'^2}}}{{\chi _{\alpha /2,n - 1}^2}} < {\sigma ^2} < \frac{{nS{'^2}}}{{\chi _{1 - \alpha /2,n - 1}^2}}\)

D. \(- \infty < {\sigma ^2} < \frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{1 - \alpha /2,n}^2}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 2: Tìm hệ số của x12  trong khai triển (2x - x2 )10 

A. \(\mathop C\nolimits_{10}^8 \)

B. \(\mathop C\nolimits_{10}^2 \)

C. \(\mathop C\nolimits_{10}^2 \mathop 2\nolimits^8 \)

D. \(\mathop { - C}\nolimits_{10}^2 \mathop 2\nolimits^8 \)

Xem đáp án

30/08/2021 3 Lượt xem

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
Thông tin thêm
  • 0 Lượt thi
  • 40 Phút
  • 30 Câu hỏi
  • Sinh viên