Câu hỏi:
Trong bài toán kiểm định cho phương sai của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:{\sigma ^2} = \sigma _0^2\\ {H_1}:{\sigma ^2} \ne \sigma _0^2 \end{array} \right.\)
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\left( {\overline X - {\mu _0}} \right)}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
Câu 1: Đẳng thức nào sau đây là đúng?
A. \(1 + 2 + 3 + 4 + .... + n = \mathop C\nolimits_{n + 1}^2\)
B. \(1 + 2 + 3 + 4 + .... + n = \mathop A\nolimits_{n + 1}^2 \)
C. \(1 + 2 + 3 + 4 + .... + n = \mathop C\nolimits_n^1 + \mathop C\nolimits_n^2 + .... + \mathop C\nolimits_n^n \)
D. \(1 + 2 + 3 + 4 + .... + n = \mathop A\nolimits_n^1 + \mathop A\nolimits_n^2 + .... + \mathop A\nolimits_n^n \)
30/08/2021 2 Lượt xem
Câu 2: Trong bài toán kiểm định cho xác suất (tỷ lệ), với cặp giả thuyết, đối thuyết: \(\left\{ \begin{array}{l} {H_0}:p = {p_0}\\ {H_1}:p \ne {p_0} \end{array} \right.\) ta chọn thống kê để kiểm định là:
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
30/08/2021 2 Lượt xem
Câu 4: Nếu biến ngẫu nhiên gốc tuân theo phân phối nhị thức \(X \sim B\left( {1,p} \right)\) thì \(n\overline X\) tuân theo phân phối?
A. \(n\overline X \sim N\left( {0,1} \right)\)
B. \(n\overline X \sim B\left( {n,p} \right)\)
C. \(n\overline X \sim N\left( {n,p} \right)\)
D. \(n\overline X \sim B\left( {0,1} \right)\)
30/08/2021 2 Lượt xem
Câu 5: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho tỷ lệ là:
A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)
B. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }};\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)
C. \(\left( {f - \frac{{\sqrt {f\left( {1 - f} \right)} }}{{\sqrt n }}{u_{\alpha /2}};f + \frac{{\sqrt {f\left( {1 - f} \right)} }}{{\sqrt n }}{u_{\alpha /2}}} \right)\)
D. \(\left( {f - \frac{{\sqrt {f\left( {1 + f} \right)} }}{{\sqrt n }}{u_{\alpha /2}};f + \frac{{\sqrt {f\left( {1 + f} \right)} }}{{\sqrt n }}{u_{\alpha /2}}} \right)\)
30/08/2021 2 Lượt xem
Câu 6: Biến ngẫu nhiên X tuân theo luật phân phối đều liên tục: \(X \sim U\left( {\left[ {a;b} \right]} \right)\) , (a < b). X có phương sai bằng: ![]()
A. \(\frac{{{{\left( {b - a} \right)}^2}}}{{12}}\)
B. \(\frac{{{{\left( {b + a} \right)}^2}}}{{12}}\)
C. \(\frac{{{b^2} - {a^2}}}{{12}}\)
D. \(\frac{{{b^2} + {a^2}}}{{12}}\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
- 0 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 455
- 14
- 30
-
55 người đang thi
- 337
- 1
- 30
-
32 người đang thi
- 392
- 3
- 30
-
35 người đang thi
- 358
- 5
- 30
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận