Câu hỏi:
Trong bài toán kiểm định cho phương sai của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:{\sigma ^2} = \sigma _0^2\\ {H_1}:{\sigma ^2} \ne \sigma _0^2 \end{array} \right.\)
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\left( {\overline X - {\mu _0}} \right)}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
Câu 1: Trong bài toán kiểm định giả thuyết cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu \ne {\mu _0} \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
Câu 2: Có người nói tỷ lệ sản phẩm xấu của nhà máy tối đa là 7%. Kiểm tra 100 sản phẩm thấy 8 phế phẩm. Với mức ý nghĩa = 0,05, hãy kết luận ý kiến trên. Giá trị quan sát (Kiểm định thực nghiệm) nào là đúng dưới đây?
A. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,07)\sqrt {100} }}{{\sqrt {0,03.0,97} }}\)
B. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
C. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
D. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,04)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
30/08/2021 2 Lượt xem
Câu 3: Cho biết ý nghĩa của \({r_{XY}} = - 0,56\)
A. X, Y tương quan nghịch lỏng lẻo
B. X, Y tương quan thuận chặt chẽ
C. X, Y tương quan nghịch chặt chẽ
D. X, Y tương quan thuận lỏng lẻo
30/08/2021 3 Lượt xem
Câu 4: Đẳng thức nào sau đây là đúng?
A. \(1 + 2 + 3 + 4 + .... + n = \mathop C\nolimits_{n + 1}^2\)
B. \(1 + 2 + 3 + 4 + .... + n = \mathop A\nolimits_{n + 1}^2 \)
C. \(1 + 2 + 3 + 4 + .... + n = \mathop C\nolimits_n^1 + \mathop C\nolimits_n^2 + .... + \mathop C\nolimits_n^n \)
D. \(1 + 2 + 3 + 4 + .... + n = \mathop A\nolimits_n^1 + \mathop A\nolimits_n^2 + .... + \mathop A\nolimits_n^n \)
30/08/2021 2 Lượt xem
Câu 5: Trong bài toán kiểm định giả thuyết so sánh kỳ vọng của hai biến ngẫu nhiên phân phối chuẩn với cặp giả thuyết, đối thuyết: \(\left\{ \begin{array}{l} {H_0}:{\mu _1} = {\mu _2}\\ {H_1}:{\mu _1} \ne {\mu _2} \end{array} \right.\) ![]()
A. \(U = \frac{{\overline X - \overline Y - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{\sigma _1^2}}{n} + \frac{{\sigma _2^2}}{m}} }}\)
B. \(T = \frac{{\overline X - \overline Y }}{{\sqrt {\frac{{nS_x^2 + mS_y^2}}{{n + m - 2}}} \sqrt {\frac{{n + m}}{{nm}}} }}\)
C. \(U = \frac{{{f_1} - {f_2}}}{{\sqrt {f\left( {1 - f} \right)\left( {\frac{1}{n} + \frac{1}{m}} \right)} }}\)
D. \(F = \frac{{S_x^{'2}/\sigma _1^2}}{{S_y^{'2}/\sigma _2^2}}\)
30/08/2021 2 Lượt xem
Câu 6: Trong bài toán kiểm định cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu < {\mu _0} \end{array} \right.\) ![]()
A. \(W = \left( { - \infty ;{u_{\alpha /2}}} \right) \cup \left( {{u_{\alpha /2}}; + \infty } \right)\)
B. \(W = \left( {{u_\alpha }; + \infty } \right)\)
C. \(W = \left( { - \infty ; - {u_\alpha }} \right)\)
D. \(W = \left( { - \infty ; + {u_{\alpha /2}}} \right)\)
30/08/2021 2 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
- 0 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 505
- 14
- 30
-
44 người đang thi
- 394
- 1
- 30
-
70 người đang thi
- 439
- 3
- 30
-
95 người đang thi
- 391
- 5
- 30
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận