Câu hỏi: Biến ngẫu nhiên X tuân theo luật phân phối đều liên tục: \(X \sim U\left( {\left[ {a;b} \right]} \right)\)  , (a < b). X có phương sai bằng:

102 Lượt xem
30/08/2021
2.8 6 Đánh giá

A. \(\frac{{{{\left( {b - a} \right)}^2}}}{{12}}\)

B. \(\frac{{{{\left( {b + a} \right)}^2}}}{{12}}\)

C. \(\frac{{{b^2} - {a^2}}}{{12}}\)

D. \(\frac{{{b^2} + {a^2}}}{{12}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Trong bài toán kiểm định giả thuyết cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu \ne {\mu _0} \end{array} \right.\)

A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)

B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)

C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)

D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Trong bài toán kiểm định giả thuyết so sánh kỳ vọng của hai biến ngẫu nhiên phân phối chuẩn với cặp giả thuyết, đối thuyết: \(\left\{ \begin{array}{l} {H_0}:{\mu _1} = {\mu _2}\\ {H_1}:{\mu _1} \ne {\mu _2} \end{array} \right.\)

A. \(U = \frac{{\overline X - \overline Y - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{\sigma _1^2}}{n} + \frac{{\sigma _2^2}}{m}} }}\)

B. \(T = \frac{{\overline X - \overline Y }}{{\sqrt {\frac{{nS_x^2 + mS_y^2}}{{n + m - 2}}} \sqrt {\frac{{n + m}}{{nm}}} }}\)

C. \(U = \frac{{{f_1} - {f_2}}}{{\sqrt {f\left( {1 - f} \right)\left( {\frac{1}{n} + \frac{1}{m}} \right)} }}\)

D. \(F = \frac{{S_x^{'2}/\sigma _1^2}}{{S_y^{'2}/\sigma _2^2}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) chưa biết) là:

A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)

B. \(\left( { - \infty ;\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)

C. \(\left( {\frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}; + \infty } \right)\)

D. \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 6: Nếu biến ngẫu nhiên gốc tuân theo phân phối nhị thức \(X \sim B\left( {1,p} \right)\) thì \(n\overline X\) tuân theo phân phối?

A. \(n\overline X \sim N\left( {0,1} \right)\)

B. \(n\overline X \sim B\left( {n,p} \right)\)

C. \(n\overline X \sim N\left( {n,p} \right)\)

D. \(n\overline X \sim B\left( {0,1} \right)\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
Thông tin thêm
  • 0 Lượt thi
  • 40 Phút
  • 30 Câu hỏi
  • Sinh viên