Câu hỏi: Công thức ước lượng giá trị tối thiểu (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) ( \(\sigma\) chưa biết) là:

122 Lượt xem
30/08/2021
3.0 5 Đánh giá

A. \(\mu \in \left( {\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)

B. \(\mu \in \left( {\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)

C. \(\mu \in \left( { - \infty ;\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)

D. \(\mu \in \left( { - \infty ;\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3: Trong bài toán kiểm định cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu < {\mu _0} \end{array} \right.\)

A. \(W = \left( { - \infty ;{u_{\alpha /2}}} \right) \cup \left( {{u_{\alpha /2}}; + \infty } \right)\)

B. \(W = \left( {{u_\alpha }; + \infty } \right)\)

C. \(W = \left( { - \infty ; - {u_\alpha }} \right)\)

D. \(W = \left( { - \infty ; + {u_{\alpha /2}}} \right)\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) chưa biết) là:

A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)

B. \(\left( { - \infty ;\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)

C. \(\left( {\frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}; + \infty } \right)\)

D. \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
Thông tin thêm
  • 0 Lượt thi
  • 40 Phút
  • 30 Câu hỏi
  • Sinh viên