Câu hỏi: Công thức ước lượng giá trị tối thiểu (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) ( \(\sigma\) chưa biết) là:
A. \(\mu \in \left( {\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)
B. \(\mu \in \left( {\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)
C. \(\mu \in \left( { - \infty ;\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)
D. \(\mu \in \left( { - \infty ;\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)
Câu 1: Biến ngẫu nhiên X tuân theo luật phân phối đều liên tục: \(X \sim U\left( {\left[ {a;b} \right]} \right)\) , (a < b). X có phương sai bằng: ![]()
A. \(\frac{{{{\left( {b - a} \right)}^2}}}{{12}}\)
B. \(\frac{{{{\left( {b + a} \right)}^2}}}{{12}}\)
C. \(\frac{{{b^2} - {a^2}}}{{12}}\)
D. \(\frac{{{b^2} + {a^2}}}{{12}}\)
30/08/2021 2 Lượt xem
Câu 2: Trong bài toán kiểm định cho phương sai của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:{\sigma ^2} = \sigma _0^2\\ {H_1}:{\sigma ^2} \ne \sigma _0^2 \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\left( {\overline X - {\mu _0}} \right)}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
Câu 3: Trong bài toán kiểm định giả thuyết cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu \ne {\mu _0} \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 4 Lượt xem
Câu 4: Nếu biến ngẫu nhiên gốc tuân theo phân phối nhị thức \(X \sim B\left( {1,p} \right)\) thì \(n\overline X\) tuân theo phân phối?
A. \(n\overline X \sim N\left( {0,1} \right)\)
B. \(n\overline X \sim B\left( {n,p} \right)\)
C. \(n\overline X \sim N\left( {n,p} \right)\)
D. \(n\overline X \sim B\left( {0,1} \right)\)
30/08/2021 2 Lượt xem
Câu 5: Có người nói tỷ lệ sản phẩm xấu của nhà máy tối đa là 7%. Kiểm tra 100 sản phẩm thấy 8 phế phẩm. Với mức ý nghĩa = 0,05, hãy kết luận ý kiến trên. Giá trị quan sát (Kiểm định thực nghiệm) nào là đúng dưới đây?
A. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,07)\sqrt {100} }}{{\sqrt {0,03.0,97} }}\)
B. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
C. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
D. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,04)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
30/08/2021 2 Lượt xem
Câu 6: Một hộp bi có 5 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh. Hỏi có bao nhiêu cách lấy ra 4 viên bi trong đó số viên bi đỏ lớn hơn số viên bi vàng.
A. 654
B. 275
C. 462
D. 357
30/08/2021 2 Lượt xem
![Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13 Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13](/uploads/webp/2021/09/22/bo-cau-hoi-trac-nghiem-mon-xac-suat-thong-ke-phan-13_1.png.webp)
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
- 0 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 404
- 14
- 30
-
61 người đang thi
- 291
- 1
- 30
-
33 người đang thi
- 357
- 3
- 30
-
46 người đang thi
- 324
- 5
- 30
-
89 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận