Câu hỏi: Cho bảng số liệu Trung bình mẫu bằng bao nhiêu? 

106 Lượt xem
30/08/2021
4.0 7 Đánh giá

A. 7,5

B. 8,4

C. 8,9

D. 9,2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Trong bài toán kiểm định giả thuyết cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu \ne {\mu _0} \end{array} \right.\)

A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)

B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)

C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)

D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Trong bài toán kiểm định cho xác suất (tỷ lệ), với cặp giả thuyết, đối thuyết: \(\left\{ \begin{array}{l} {H_0}:p = {p_0}\\ {H_1}:p \ne {p_0} \end{array} \right.\) ta chọn thống kê để kiểm định là:

A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)

B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)

C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)

D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Tìm hệ số của x12  trong khai triển (2x - x2 )10 

A. \(\mathop C\nolimits_{10}^8 \)

B. \(\mathop C\nolimits_{10}^2 \)

C. \(\mathop C\nolimits_{10}^2 \mathop 2\nolimits^8 \)

D. \(\mathop { - C}\nolimits_{10}^2 \mathop 2\nolimits^8 \)

Xem đáp án

30/08/2021 3 Lượt xem

Câu 5: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho phương sai của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (a chưa biết) là:

A. \(\frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{\alpha /2,n}^2}} < {\sigma ^2} < \frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{1 - \alpha /2,n}^2}}\)

B. \(\frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{\alpha /2,n - 1}^2}} < {\sigma ^2} < \frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{1 - \alpha /2,n - 1}^2}}\)

C. \(\frac{{nS{'^2}}}{{\chi _{\alpha /2,n - 1}^2}} < {\sigma ^2} < \frac{{nS{'^2}}}{{\chi _{1 - \alpha /2,n - 1}^2}}\)

D. \(- \infty < {\sigma ^2} < \frac{{\left( {n - 1} \right)S{'^2}}}{{\chi _{1 - \alpha /2,n}^2}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
Thông tin thêm
  • 0 Lượt thi
  • 40 Phút
  • 30 Câu hỏi
  • Sinh viên