Câu hỏi: Để điều tra sự hài lòng của sinh viên về hoạt động của Thư viện Trường, đám đông cần xác định là:
A. Sinh viên thường đến thư viện
B. Sinh viên của Khoa Công nghệ Thực phẩm
C. Sinh viên trong toàn trường
D. Sinh viên Đại học chính qui
Câu 1: Công thức ước lượng giá trị tối thiểu (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) ( \(\sigma\) chưa biết) là:
A. \(\mu \in \left( {\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)
B. \(\mu \in \left( {\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)
C. \(\mu \in \left( { - \infty ;\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)
D. \(\mu \in \left( { - \infty ;\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)
30/08/2021 2 Lượt xem
Câu 2: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) đã biết) là:
A. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }};\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)
B. \(\left( { - \infty ;\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)
C. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}; + \infty } \right)\)
D. \(\left( { - \infty ; + \infty } \right)\)
30/08/2021 5 Lượt xem
Câu 3: Trong bài toán kiểm định cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu < {\mu _0} \end{array} \right.\) ![]()
A. \(W = \left( { - \infty ;{u_{\alpha /2}}} \right) \cup \left( {{u_{\alpha /2}}; + \infty } \right)\)
B. \(W = \left( {{u_\alpha }; + \infty } \right)\)
C. \(W = \left( { - \infty ; - {u_\alpha }} \right)\)
D. \(W = \left( { - \infty ; + {u_{\alpha /2}}} \right)\)
30/08/2021 2 Lượt xem
Câu 4: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) (\(\sigma\) chưa biết) là:
A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)
B. \(\left( { - \infty ;\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)
C. \(\left( {\frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}; + \infty } \right)\)
D. \(\left( { - \infty ; + \infty } \right)\)
30/08/2021 2 Lượt xem
Câu 5: Trong bài toán kiểm định cho phương sai của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:{\sigma ^2} = \sigma _0^2\\ {H_1}:{\sigma ^2} \ne \sigma _0^2 \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\left( {\overline X - {\mu _0}} \right)}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
Câu 6: Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí:
A. \(\frac{{253}}{{1152}}\)
B. \(\frac{{899}}{{1152}}\)
C. \(\frac{4}{7}\)
D. \(\frac{{26}}{{35}}\)
30/08/2021 6 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
- 0 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 484
- 14
- 30
-
21 người đang thi
- 366
- 1
- 30
-
61 người đang thi
- 418
- 3
- 30
-
92 người đang thi
- 371
- 5
- 30
-
25 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận