Câu hỏi: Có người nói tỷ lệ sản phẩm xấu của nhà máy tối đa là 7%. Kiểm tra 100 sản phẩm thấy 8 phế phẩm. Với mức ý nghĩa = 0,05, hãy kết luận ý kiến trên. Giá trị quan sát (Kiểm định thực nghiệm) nào là đúng dưới đây?
A. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,07)\sqrt {100} }}{{\sqrt {0,03.0,97} }}\)
B. \(\mathop T\nolimits_{qs} = \frac{{(0,08 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
C. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,06)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
D. \(\mathop T\nolimits_{qs} = \frac{{(0,07 - 0,04)\sqrt {100} }}{{\sqrt {0,06.0,94} }}\)
Câu 1: Trong bài toán kiểm định giả thuyết cho kỳ vọng của biến ngẫu nhiên có phân phối chuẩn, với cặp giả thuyết, đối thuyết \(\left\{ \begin{array}{l} {H_0}:\mu = {\mu _0}\\ {H_1}:\mu \ne {\mu _0} \end{array} \right.\) ![]()
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
Câu 2: Trong bài toán kiểm định cho xác suất (tỷ lệ), với cặp giả thuyết, đối thuyết: \(\left\{ \begin{array}{l} {H_0}:p = {p_0}\\ {H_1}:p \ne {p_0} \end{array} \right.\) ta chọn thống kê để kiểm định là:
A. \(U = \frac{{\left( {\overline X - {\mu _0}} \right)}}{\sigma }\sqrt n\)
B. \(T = \frac{{\overline X - {\mu _0}}}{{S'}}\sqrt n\)
C. \({\chi ^2} = \frac{{n{S^{*2}}}}{{\sigma _0^2}}\)
D. \(U = \frac{{\left( {f - {p_0}} \right)}}{{\sqrt {{p_0}\left( {1 - {p_0}} \right)} }}\sqrt n\)
30/08/2021 2 Lượt xem
Câu 3: Nếu biến ngẫu nhiên gốc tuân theo phân phối nhị thức \(X \sim B\left( {1,p} \right)\) thì \(n\overline X\) tuân theo phân phối?
A. \(n\overline X \sim N\left( {0,1} \right)\)
B. \(n\overline X \sim B\left( {n,p} \right)\)
C. \(n\overline X \sim N\left( {n,p} \right)\)
D. \(n\overline X \sim B\left( {0,1} \right)\)
30/08/2021 2 Lượt xem
Câu 4: Công thức ước lượng khoảng tin cậy đối xứng (với độ tin cậy \(1 - \alpha\) ) cho tỷ lệ là:
A. \(\left( {\overline x - \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }};\overline x + \frac{{t_{\alpha /2}^{n - 1}S'}}{{\sqrt n }}} \right)\)
B. \(\left( {\overline x - \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }};\overline x + \frac{{{u_{\alpha /2}}\sigma }}{{\sqrt n }}} \right)\)
C. \(\left( {f - \frac{{\sqrt {f\left( {1 - f} \right)} }}{{\sqrt n }}{u_{\alpha /2}};f + \frac{{\sqrt {f\left( {1 - f} \right)} }}{{\sqrt n }}{u_{\alpha /2}}} \right)\)
D. \(\left( {f - \frac{{\sqrt {f\left( {1 + f} \right)} }}{{\sqrt n }}{u_{\alpha /2}};f + \frac{{\sqrt {f\left( {1 + f} \right)} }}{{\sqrt n }}{u_{\alpha /2}}} \right)\)
30/08/2021 2 Lượt xem
30/08/2021 2 Lượt xem
Câu 6: Công thức ước lượng giá trị tối thiểu (với độ tin cậy \(1 - \alpha\) ) cho kỳ vọng của biến ngẫu nhiên \(X \sim N\left( {a,{\sigma ^2}} \right)\) ( \(\sigma\) chưa biết) là:
A. \(\mu \in \left( {\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)
B. \(\mu \in \left( {\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}; + \infty } \right)\)
C. \(\mu \in \left( { - \infty ;\overline x - \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)
D. \(\mu \in \left( { - \infty ;\overline x + \frac{{s'}}{{\sqrt n }}t_\alpha ^{n - 1}} \right)\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Xác suất thống kê - Phần 13
- 0 Lượt thi
- 40 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Xác suất thống kê có đáp án
- 545
- 14
- 30
-
78 người đang thi
- 438
- 1
- 30
-
52 người đang thi
- 481
- 3
- 30
-
24 người đang thi
- 432
- 5
- 30
-
97 người đang thi

Chia sẻ:
Đăng Nhập để viết bình luận