Câu hỏi: Gọi z1, z2 là hai nghiệm \({z^2} - 6z + 10 = 0\) của phương trình. Tính \(\left| {{z_1} - {z_2}} \right|.\)
A. 2
B. 4
C. 6
D. \(\sqrt 5 \)
Câu 1: Trong không gian với hệ tọa độ Oxy, cho mặt phẳng \(\left( P \right):x + y - 8 = 0\) và điểm I(-1;-1;0). Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có phương trình là:
A. \({(x - 1)^2} + {(y - 1)^2} + {z^2} = 50\)
B. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 5\sqrt 2 \)
C. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 50\)
D. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 25\)
18/11/2021 1 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1), đường thẳng \(d:\frac{{x - 2}}{1} = \frac{y}{3} = \frac{{z + 2}}{2}\) và mặt phẳng (P):2x + y - z + 1 = 0. Đường thẳng đi qua A cắt đường thẳng d và song song với (P) có phương trình là:
A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{{ - 5}}\)
B. \(\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 9}}\)
C. \(\frac{{x - 1}}{9} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 5}}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{5}\)
18/11/2021 1 Lượt xem
Câu 3: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:
A. \(I\left( {2; - 2;0} \right),R = 5\)
B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)
C. \(I\left( {2;3;1} \right),R = 5\)
D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)
18/11/2021 1 Lượt xem
Câu 4: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{1} = \frac{{z + 1}}{2}\). Mặt phẳng (Q) đi qua điểm M(-3;1;1) và vuông góc với đường thẳng d có phương trình là:
A. 2x - y - 2z + 9 = 0
B. - 2x + y + 2z + 9 = 0
C. 2x - y - 2z + 5 = 0
D. - 2x + y + 2z + 5 = 0
18/11/2021 0 Lượt xem
Câu 5: Cho số phức z thỏa |z| = 4. Biết rằng tập hợp các điểm biểu diễn của số phức \({\rm{w}} = \left( {3 + 4i} \right)z + i\) là một đường tròn. Bán kính r của đường tròn đó là:
A. r = 4
B. r = 20
C. r = 22
D. r = 5
18/11/2021 1 Lượt xem
Câu 6: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp
A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)
B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)
C. đổi biến số và đặt \(u = \ln (x + 2)\)
D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 662
- 0
- 40
-
20 người đang thi
- 706
- 13
- 40
-
43 người đang thi
- 629
- 6
- 30
-
61 người đang thi
- 604
- 7
- 30
-
14 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận