Câu hỏi:
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\) trên [1; 2] bằng 2. Số phần tử của tập S là
A. 3
B. 1
C. 4
D. 2
Câu 1: Đồ thị trong hình bên là của hàm số y = f(x), S là diện tích hình phẳng (phần tô đậm trong hình). Chọn khẳng định đúng.
6184b975ad48d.png)
6184b975ad48d.png)
A. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx} + \int\limits_0^1 {f\left( x \right)dx} .\)
B. \(S = \int\limits_{ - 2}^1 {f\left( x \right)dx} .\)
C. \(S = \int\limits_0^{ - 2} {f\left( x \right)dx} + \int\limits_0^1 {f\left( x \right)dx} .\)
D. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx} - \int\limits_0^1 {f\left( x \right)dx} .\)
05/11/2021 10 Lượt xem
Câu 2: Cho hình hộp chữ nhật ABCD.A'B'C'D có tổng diện tích của tất cả các mặt là 36, độ dài đường chéo AC' bằng 6. Hỏi thể tích của khối hộp lớn nhất là bao nhiêu?
A. 8
B. \(8\sqrt 2 \)
C. \(16\sqrt 2 \)
D. \(24\sqrt 3 \)
05/11/2021 8 Lượt xem
Câu 3: Trong không gian Oxyz, cho điểm A(1;-2;3). Hình chiếu vuông góc của điểm A lên mặt phẳng (Oxy) là điểm M có tọa độ
A. M(1;-2;0)
B. M(0;-2;3)
C. M(1;0;3)
D. M(2;-1;0)
05/11/2021 7 Lượt xem
Câu 4: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( {1; - 2; - 3} \right),B\left( { - 1;4;1} \right)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?
A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)
B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)
C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}.\)
D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}.\)
05/11/2021 7 Lượt xem
Câu 5: Cho hàm số \(y = \sqrt {{x^2} + 3} - x\ln x\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1; 2]. Khi đó tích M.m bằng
A. \(2\sqrt 7 + 4\ln 2.\)
B. \(2\sqrt 7 + 4\ln 5.\)
C. \(2\sqrt 7 - 4\ln 5.\)
D. \(2\sqrt 7 - 4\ln 2.\)
05/11/2021 8 Lượt xem
Câu 6: Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a,AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45o. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
A. \(\frac{{a\sqrt {1315} }}{{89}}.\)
B. \(\frac{{2a\sqrt {1315} }}{{89}}.\)
C. \(\frac{{a\sqrt {1513} }}{{89}}.\)
D. \(\frac{{2a\sqrt {1513} }}{{89}}.\)
05/11/2021 7 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
- 35 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
77 người đang thi
- 1.4K
- 122
- 50
-
48 người đang thi
- 1.2K
- 75
- 50
-
79 người đang thi
- 901
- 31
- 50
-
55 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận