Câu hỏi:

Dãy số \(({u_n})\) với \({u_n} = \frac{{{3^n} + {{2.5}^n}}}{{{4^n} + {5^n}}}\)có giới hạn bằng

350 Lượt xem
18/11/2021
3.9 12 Đánh giá

A. 4

B. 2

C. 3

D. 5

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong các mệnh đề sau, mệnh đề nào đúng?

A. \(\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos (\overrightarrow u ,\overrightarrow v ).\)

B. \(\overrightarrow u .\overrightarrow v  = \overrightarrow u .\overrightarrow v .\sin (\overrightarrow u ,\overrightarrow v ).\)

C. \(\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\)

D. \(\overrightarrow u .\overrightarrow v  = \overrightarrow u .\overrightarrow v .\cos (\overrightarrow u ,\overrightarrow v ).\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 4:

Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số giảm là

A. \({u_n} = \sin n\)

B. \({u_n} = \sqrt n  - \sqrt {n - 1} \)

C. \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right)\)

D. \({u_n} = \frac{{{n^2} + 1}}{n}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6:

Tính đạo hàm của hàm số \(y = \tan 3x\).

A. \(y' =  - \frac{3}{{{{\cos }^2}3x}}\)

B. \(y' =  - \frac{3}{{si{n^2}3x}}\).

C. \(y' = \frac{{3x}}{{{{\cos }^2}3x}}\).

D. \(y' = \frac{3}{{{{\cos }^2}3x}}\).

Xem đáp án

18/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh