Câu hỏi:

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } ( - {x^3} + 2{x^2} - x + 1)\) bằng

267 Lượt xem
18/11/2021
3.7 18 Đánh giá

A. 1

B. \( - \infty \).

C. -1

D. \( + \infty \).

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho tứ diện ABCD với M là trung điểm cạnh BC. Mệnh đề nào sau đây sai?

A. \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)

B. \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = \overrightarrow 0 \)

C. \(\overrightarrow {MD}  =  - \frac{1}{2}\left( {\overrightarrow {DB}  + \overrightarrow {DC} } \right)\)

D. \(\overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow 0 \)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2:

Trong bốn giới hạn sau đây, giới hạn nào là \( - \infty \)?

A. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 4}}{{x - 1}}\)

B. \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x + 4}}{{x - 1}}\)

C. \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 4}}{{x - 1}}\)

D. \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - x + 4}}{{x - 1}}\)

Xem đáp án

18/11/2021 0 Lượt xem

Câu 4:

Đạo hàm của hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) là

A. \(y' = \frac{{2x + 2}}{{{{\left( {x + 1} \right)}^2}}}\)

B. y' = 2x + 2

C. \(y' = \frac{{{x^2} + 2x}}{{x + 1}}\)

D. \(y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh