Câu hỏi:

Tính đạo hàm của hàm số \(y = \tan 3x\).

278 Lượt xem
18/11/2021
3.8 18 Đánh giá

A. \(y' =  - \frac{3}{{{{\cos }^2}3x}}\)

B. \(y' =  - \frac{3}{{si{n^2}3x}}\).

C. \(y' = \frac{{3x}}{{{{\cos }^2}3x}}\).

D. \(y' = \frac{3}{{{{\cos }^2}3x}}\).

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là

A. \(y' =  - \frac{3}{{{{\left( {x + 1} \right)}^2}}}\)

B. \(y' =  - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\)

C. \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).

D. \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 4:

Trong bốn giới hạn sau đây, giới hạn nào là \( - \infty \)?

A. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 4}}{{x - 1}}\)

B. \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x + 4}}{{x - 1}}\)

C. \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 4}}{{x - 1}}\)

D. \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - x + 4}}{{x - 1}}\)

Xem đáp án

18/11/2021 0 Lượt xem

Câu 5:

Trong các giới hạn sau đây, giới hạn nào bằng 2?

A. \(\lim \left( {2{n^2} + n + 3} \right)\)

B. \(\lim \frac{{2{n^5} - {n^4}}}{{ - 3{n^3} + {n^5}}}\)

C. \(\lim \frac{{2{n^2} + 1}}{{{n^4} + 3}}\)

D. \(\lim \frac{{{n^3} - 1}}{{ - 2{n^2} + 4{n^3}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh