Câu hỏi:
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2020\). Tìm tập nghiệm \(S\) của bất phương trình \(f'\left( x \right) \le 0\).
A. \(S = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\)
B. \(S = \left[ {2; + \infty } \right)\)
C. \(S = \left( {0;2} \right)\)
D. \(S = \left[ {0;2} \right]\)
Câu 1: Tiếp tuyến của đồ thị hàm số \(y = \frac{{{x^3}}}{3} - {x^2} - 2x\) có hệ số góc \(k = - 3\) có phương trình là
A. \(y = - 3x + \frac{1}{3}.\)
B. \(y = - 3x - \frac{1}{3}.\)
C. y = - 9x + 43.
D. y = - 3x - 11.
18/11/2021 3 Lượt xem
Câu 2: Cho tứ diện ABCD với M là trung điểm cạnh BC. Mệnh đề nào sau đây sai?
A. \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
B. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = \overrightarrow 0 \)
C. \(\overrightarrow {MD} = - \frac{1}{2}\left( {\overrightarrow {DB} + \overrightarrow {DC} } \right)\)
D. \(\overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)
18/11/2021 1 Lượt xem
Câu 3: Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số giảm là
A. \({u_n} = \sin n\)
B. \({u_n} = \sqrt n - \sqrt {n - 1} \)
C. \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right)\)
D. \({u_n} = \frac{{{n^2} + 1}}{n}\)
18/11/2021 1 Lượt xem
Câu 4: Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \)
B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \)
C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \)
D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).
18/11/2021 2 Lượt xem
Câu 5: Tính đạo hàm của hàm số \(y = \tan 3x\).
A. \(y' = - \frac{3}{{{{\cos }^2}3x}}\)
B. \(y' = - \frac{3}{{si{n^2}3x}}\).
C. \(y' = \frac{{3x}}{{{{\cos }^2}3x}}\).
D. \(y' = \frac{3}{{{{\cos }^2}3x}}\).
18/11/2021 0 Lượt xem
Câu 6: Trong các mệnh đề sau, mệnh đề nào sai ?
A. \(\lim \frac{1}{{{n^k}}} = 0\)\(\left( {k \ge 1} \right)\).
B. \(\lim {q^n} = + \infty \) nếu \(q > 1\) .
C. \(\lim {q^n} = + \infty \) nếu \(\left| q \right| < 1\).
D. \(\lim {n^k} = + \infty \) với \(k\) nguyên dương.
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 630
- 1
- 30
-
37 người đang thi
- 622
- 0
- 30
-
28 người đang thi
- 622
- 0
- 30
-
11 người đang thi
- 538
- 0
- 30
-
49 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận