Câu hỏi:

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 2}}\,\,\,\,khi\,\,\,x \ne 2\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,x = 2\end{array} \right..\) Tìm tất cả các giá trị của tham số \(m\) để hàm số đã cho liên tục tại \({x_0} = 2.\)

260 Lượt xem
18/11/2021
3.9 16 Đánh giá

A. m =  - 2.

B. m = 1.

C. \(m =  \pm \sqrt 2 .\)

D. m = 2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

\(\lim \frac{{2n + 1}}{{n - 3}}\) bằng

A. \( - \frac{1}{3}\)

B. \( + \infty \)

C. \(\frac{1}{2}\)

D. 2

Xem đáp án

18/11/2021 1 Lượt xem

Xem đáp án

18/11/2021 2 Lượt xem

Câu 4:

Tiếp tuyến của đồ thị hàm số \(y = \frac{{{x^3}}}{3} - {x^2} - 2x\) có hệ số góc \(k =  - 3\) có phương trình là

A. \(y =  - 3x + \frac{1}{3}.\)

B. \(y =  - 3x - \frac{1}{3}.\)

C. y =  - 9x + 43.

D. y =  - 3x - 11.

Xem đáp án

18/11/2021 3 Lượt xem

Câu 5:

Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là

A. \(y' =  - \frac{3}{{{{\left( {x + 1} \right)}^2}}}\)

B. \(y' =  - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\)

C. \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).

D. \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh