Câu hỏi: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta  = {b^2} - 4ac\). Nếu \(\Delta  < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?

288 Lượt xem
18/11/2021
3.4 10 Đánh giá

A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta  }}{{2a}}\)

B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{a}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 5: Tìm công thức sai

A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)

B. \(\int\limits_a^b {f\left( x \right)dx =  - \int\limits_b^a {f(x)dx} } .\)

C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)

D. \(\int\limits_a^a {f(x)dx = 0} \)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?

A. Tam giác ABC là tam giác đều.

B. O là tâm đường tròn ngoại tiếp tam giác ABC

C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).

D. O là trọng tâm tam giác ABC

Xem đáp án

18/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh