Câu hỏi: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&1&2&1\\ 2&3&4&2\\ 3&4&2&5\\ 4&5&7&8 \end{array}} \right]\) . Tìm hạng của ma trận phụ hợp PA?

235 Lượt xem
30/08/2021
3.0 7 Đánh giá

A. 3

B. 1

C. 4

D. 2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\) . Biết \({\left[ {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right]^n} = \left[ {\begin{array}{*{20}{c}} {{a^n}}&0\\ 0&{{b^n}} \end{array}} \right](n \in {N^ + })\) . Tính A3?

A. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&0\\ 0&{{3^3}} \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ - {2^3}}\\ 0&{{3^3}} \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&1\\ 0&{{3^3}} \end{array}} \right]\)

D. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ + {3^3}}\\ 0&{{3^3}} \end{array}} \right]\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 2: Cho số phức \(z = 1 + 2i\) . Tính \(z^5.\)

A. 41 − 38i.

B. 41 + 38i

C. 22 + 35i.

D. −41 − 38i.

Xem đáp án

30/08/2021 2 Lượt xem

Câu 3: Cho \(f(x) = 3{x^2} - 2x;A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&{ - 1} \end{array}} \right]\) . Tính f(A).

A. \(\left[ {\begin{array}{*{20}{c}} {19}&5\\ { - 6}&{13} \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} {19}&-4\\ { - 6}&{23} \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} {19}&{-4}\\ {8}&{21} \end{array}} \right]\)

D. Ba câu kia đều sai

Xem đáp án

30/08/2021 1 Lượt xem

Câu 5: Tìm argument φ của số phức \(z = (\sqrt 3 + i)(1 - i)\)

A. \(\varphi = \frac{{7\pi }}{{12}}\)

B. \(\varphi = \frac{{-\pi }}{{12}}\)

C. \(\varphi = \frac{{\pi }}{{4}}\)

D. \(\varphi = \frac{{5\pi }}{{12}}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Tìm \(\sqrt { - i}\)  trong trường số phức

A. \({z_1} = {e^{\frac{{i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)

B. Các câu kia đều sai

C. \({z_1} = {e^{\frac{{-i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)

D. \({z_1} = {e^{\frac{{-i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
Thông tin thêm
  • 5 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên