Câu hỏi: Cho \(A = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\pi }{3}}&{\sin \frac{\pi }{3}}\\ { - \sin \frac{\pi }{3}}&{\cos \frac{\pi }{3}} \end{array}} \right],X \in {M_{2 \times 1}}\left[ R \right]\) . Thực hiện phép nhân AX, ta thấy:

136 Lượt xem
30/08/2021
3.7 9 Đánh giá

A. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)

B. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)

C. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)

D. Ba câu kia đều sai

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\) . Biết \({\left[ {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right]^n} = \left[ {\begin{array}{*{20}{c}} {{a^n}}&0\\ 0&{{b^n}} \end{array}} \right](n \in {N^ + })\) . Tính A3?

A. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&0\\ 0&{{3^3}} \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ - {2^3}}\\ 0&{{3^3}} \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&1\\ 0&{{3^3}} \end{array}} \right]\)

D. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ + {3^3}}\\ 0&{{3^3}} \end{array}} \right]\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Tính \(z = \frac{{2 + 3i}}{{3 - i}}\)

A. \(\frac{3}{5} - \frac{i}{2}\)

B. \(\frac{1}{2} - \frac{3i}{2}\)

C. \(\frac{1}{10} - \frac{5i}{2}\)

D. \(\frac{3}{10} - \frac{11i}{10}\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
Thông tin thêm
  • 5 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên