Câu hỏi: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép biến đổi sơ cấp: Đổi chỗ cột 1 và cột 3 cho nhau. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.

127 Lượt xem
30/08/2021
3.7 7 Đánh giá

A. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}\,\,\,\,\begin{array}{*{20}{c}} 0\\ 0\\ 0\\ 1 \end{array}} \right]\)

D. Cả 3 câu đều sai

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tính \(z = \frac{{2 + 3i}}{{3 - i}}\)

A. \(\frac{3}{5} - \frac{i}{2}\)

B. \(\frac{1}{2} - \frac{3i}{2}\)

C. \(\frac{1}{10} - \frac{5i}{2}\)

D. \(\frac{3}{10} - \frac{11i}{10}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 5: Cho hai ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 2&0&4 \end{array}} \right]\) và \(B = \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 2&0&0\\ 3&4&0 \end{array}} \right]\) . Khẳng định nào sau đây đúng?

A. \(AB = \left[ {\begin{array}{*{20}{c}} {14}&{13}\\ {14}&{18} \end{array}} \right]\)

B. \(AB = \left[ {\begin{array}{*{20}{c}} {14}&{13}&0\\ {14}&{18}&1 \end{array}} \right]\)

C. BA xác định nhưng AB không xác định

D. \(AB = \left[ {\begin{array}{*{20}{c}} {14}&{13}&0\\ {14}&{18}&0 \end{array}} \right]\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 6: Tìm argument φ của số phức \(z = (\sqrt 3 + i)(1 - i)\)

A. \(\varphi = \frac{{7\pi }}{{12}}\)

B. \(\varphi = \frac{{-\pi }}{{12}}\)

C. \(\varphi = \frac{{\pi }}{{4}}\)

D. \(\varphi = \frac{{5\pi }}{{12}}\)

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
Thông tin thêm
  • 5 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên