Câu hỏi: Tập hợp tất cả các số phức z, thỏa \(\left| {z + 2i} \right| + \left| {z - 2i} \right| = 9\) trong mặt phẳng phức là:
A. Đường tròn
B. Các câu kia sai
C. Nửa mặt phẳng
D. elipse.
Câu 1: Tính hạng của ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&1&2&{ - 1}\\ 2&3&5&3\\ 4&7&2&6\\ {10}&{17}&9&{15} \end{array}} \right]\)
A. r( A) = 1
B. r( A) = 3.
C. r( A) = 4.
D. r( A) = 2.
30/08/2021 2 Lượt xem
Câu 2: Tính \(z = \frac{{1 + {i^{20}}}}{{3 + i}}\)
A. \(\frac{{ - 3}}{5} + \frac{i}{5}\)
B. \(\frac{{ 2}}{5} + \frac{-i}{5}\)
C. \(\frac{{ 3}}{5} + \frac{i}{5}\)
D. \(\frac{{ 2}}{5} + \frac{i}{5}\)
30/08/2021 1 Lượt xem
Câu 3: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\) . Biết \({\left[ {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right]^n} = \left[ {\begin{array}{*{20}{c}} {{a^n}}&0\\ 0&{{b^n}} \end{array}} \right](n \in {N^ + })\) . Tính A3?
A. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&0\\ 0&{{3^3}} \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ - {2^3}}\\ 0&{{3^3}} \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&1\\ 0&{{3^3}} \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ + {3^3}}\\ 0&{{3^3}} \end{array}} \right]\)
30/08/2021 2 Lượt xem
Câu 4: Nghiệm của phương trình \(z^3 =1\) là:
A. Các câu kia sai
B. \(z = 1;z = \pm \frac{1}{2} - \frac{{\sqrt 3 }}{2}\)
C. \(z = 1;z = \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}\)
D. \(z = 1;z = -\frac{1}{2} \pm \frac{{\sqrt 3 }}{2}\)
30/08/2021 1 Lượt xem
Câu 5: Cho \(A \in {M_4}\left[ R \right],B = ({b_{ij}}) \in {M_4}\left[ R \right]\) , với \({b_{ij}} = 1\) , nếu \(j = i + 1,{b_{ij}} = 0\) , nếu \(j \ne i + 1\) . Thực hiện phép nhân AB, ta thấy:
A. Ba câu kia đều sai.
B. Các dòng của A dời lên trên 1 dòng, dòng đầu bằng 0.
C. Các cột của A dời qua phải 1 cột, cột đầu bằng 0.
D. Các cột của A dời qua trái 1 cột, cột cuối bằng 0.
30/08/2021 1 Lượt xem
Câu 6: Với giá trị nào của m thì \(A = \left[ {\begin{array}{*{20}{c}} 3&1&5\\ 2&3&2\\ 5&{ - 1}&7 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&2&1\\ 1&4&3\\ m&2&{ - 1} \end{array}} \right]\) khả nghịch?
A. \(\forall m\)
B. \(m \ne 2\)
C. m = -1
D. \(m \ne 3\)
30/08/2021 1 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
- 5 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
78 người đang thi
- 584
- 18
- 25
-
40 người đang thi
- 495
- 15
- 25
-
27 người đang thi
- 420
- 10
- 25
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận