Câu hỏi: Tính hạng của ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&1&2&{ - 1}\\ 2&3&5&3\\ 4&7&2&6\\ {10}&{17}&9&{15} \end{array}} \right]\)

220 Lượt xem
30/08/2021
3.4 8 Đánh giá

A. r( A) = 1

B. r( A) = 3.

C. r( A) = 4.

D. r( A) = 2.

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho \(A = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\pi }{3}}&{\sin \frac{\pi }{3}}\\ { - \sin \frac{\pi }{3}}&{\cos \frac{\pi }{3}} \end{array}} \right],X \in {M_{2 \times 1}}\left[ R \right]\) . Thực hiện phép nhân AX, ta thấy:

A. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)

B. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)

C. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)

D. Ba câu kia đều sai

Xem đáp án

30/08/2021 2 Lượt xem

Câu 2: Nghiệm của phương trình \(z^3 =1\) là:

A. Các câu kia sai

B. \(z = 1;z = \pm \frac{1}{2} - \frac{{\sqrt 3 }}{2}\)

C. \(z = 1;z = \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}\)

D. \(z = 1;z = -\frac{1}{2} \pm \frac{{\sqrt 3 }}{2}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Tính \(z = \frac{{2 + 3i}}{{3 - i}}\)

A. \(\frac{3}{5} - \frac{i}{2}\)

B. \(\frac{1}{2} - \frac{3i}{2}\)

C. \(\frac{1}{10} - \frac{5i}{2}\)

D. \(\frac{3}{10} - \frac{11i}{10}\)

Xem đáp án

30/08/2021 1 Lượt xem

Xem đáp án

30/08/2021 2 Lượt xem

Câu 5: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép biến đổi sơ cấp: Đổi chỗ cột 1 và cột 3 cho nhau. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.

A. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}\,\,\,\,\begin{array}{*{20}{c}} 0\\ 0\\ 0\\ 1 \end{array}} \right]\)

D. Cả 3 câu đều sai

Xem đáp án

30/08/2021 3 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
Thông tin thêm
  • 5 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên