Câu hỏi:
Với giá trị nào của k thì hạng của ma trận A lớn hơn hoặc bằng 4:
A. \(\forall\)
B. k = −1
C. \(\forall k\)
D. k = −5
Câu 1: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\) . Biết \({\left[ {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right]^n} = \left[ {\begin{array}{*{20}{c}} {{a^n}}&0\\ 0&{{b^n}} \end{array}} \right](n \in {N^ + })\) . Tính A3?
A. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&0\\ 0&{{3^3}} \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ - {2^3}}\\ 0&{{3^3}} \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&1\\ 0&{{3^3}} \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ + {3^3}}\\ 0&{{3^3}} \end{array}} \right]\)
30/08/2021 2 Lượt xem
Câu 2: Tính modun của số phức: \(z = \frac{{3 + 4i}}{{{i^{2009}}}}\)
A. 5
B. \(\frac{5}{2}\)
C. 25
D. Các câu kia sai
30/08/2021 1 Lượt xem
Câu 3: Tập hợp tất cả các số phức z, thỏa \(\left| {\arg (z) \le \frac{\pi }{2}} \right|\) trong mặt phẳng phức là:
A. Các câu kia sai
B. Nửa mặt phẳng
C. Đường tròn
D. Đường thẳng
30/08/2021 1 Lượt xem
Câu 4: Tìm \(\sqrt { - i}\) trong trường số phức
A. \({z_1} = {e^{\frac{{i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)
B. Các câu kia đều sai
C. \({z_1} = {e^{\frac{{-i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)
D. \({z_1} = {e^{\frac{{-i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
30/08/2021 1 Lượt xem
Câu 5: Cho \(f(x) = {x^2} + 2x - 5;A = \left[ {\begin{array}{*{20}{c}} 1&1\\ { - 1}&2 \end{array}} \right]\) . Tính f(A)?
A. \(\left[ {\begin{array}{*{20}{c}} { - 3}&0\\ { - 5}&2 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} { 2}&5\\ { - 5}&7 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} { - 3}&5\\ { - 5}&7 \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} { - 3}&5\\ { - 5}&2 \end{array}} \right]\)
30/08/2021 1 Lượt xem
Câu 6: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&1&1\\ 2&3&1\\ 3&4&5 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&1&m\\ 3&5&0\\ { - 4}&0&0 \end{array}} \right]\) . Tính m để A khả nghịch.
A. \(\forall\)
B. \(\forall m\)
C. \(m \ne 20\)
D. \(m \ne 0\)
30/08/2021 2 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
- 5 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
11 người đang thi
- 584
- 18
- 25
-
78 người đang thi
- 495
- 15
- 25
-
47 người đang thi
- 420
- 10
- 25
-
47 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận