Câu hỏi: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&1&1\\ 2&3&1\\ 3&4&5 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&1&m\\ 3&5&0\\ { - 4}&0&0 \end{array}} \right]\) . Tính m để A khả nghịch.
A. \(\forall\)
B. \(\forall m\)
C. \(m \ne 20\)
D. \(m \ne 0\)
Câu 1: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\) . Biết \({\left[ {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right]^n} = \left[ {\begin{array}{*{20}{c}} {{a^n}}&0\\ 0&{{b^n}} \end{array}} \right](n \in {N^ + })\) . Tính A3?
A. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&0\\ 0&{{3^3}} \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ - {2^3}}\\ 0&{{3^3}} \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&1\\ 0&{{3^3}} \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} {{2^3}}&{{3^3}}&{ + {3^3}}\\ 0&{{3^3}} \end{array}} \right]\)
30/08/2021 2 Lượt xem
Câu 2: Nghiệm của phương trình \(z^3 =1\) là:
A. Các câu kia sai
B. \(z = 1;z = \pm \frac{1}{2} - \frac{{\sqrt 3 }}{2}\)
C. \(z = 1;z = \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}\)
D. \(z = 1;z = -\frac{1}{2} \pm \frac{{\sqrt 3 }}{2}\)
30/08/2021 1 Lượt xem
Câu 3: Tìm argument φ của số phức \(z = (\sqrt 3 + i)(1 - i)\)
A. \(\varphi = \frac{{7\pi }}{{12}}\)
B. \(\varphi = \frac{{-\pi }}{{12}}\)
C. \(\varphi = \frac{{\pi }}{{4}}\)
D. \(\varphi = \frac{{5\pi }}{{12}}\)
30/08/2021 1 Lượt xem
Câu 4: Với giá trị nào của m thì \(A = \left[ {\begin{array}{*{20}{c}} 3&1&5\\ 2&3&2\\ 5&{ - 1}&7 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&2&1\\ 1&4&3\\ m&2&{ - 1} \end{array}} \right]\) khả nghịch?
A. \(\forall m\)
B. \(m \ne 2\)
C. m = -1
D. \(m \ne 3\)
30/08/2021 1 Lượt xem
Câu 5: Tính \(z = \frac{{1 + {i^{20}}}}{{3 + i}}\)
A. \(\frac{{ - 3}}{5} + \frac{i}{5}\)
B. \(\frac{{ 2}}{5} + \frac{-i}{5}\)
C. \(\frac{{ 3}}{5} + \frac{i}{5}\)
D. \(\frac{{ 2}}{5} + \frac{i}{5}\)
30/08/2021 1 Lượt xem
Câu 6: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép biến đổi sơ cấp: Đổi chỗ cột 1 và cột 3 cho nhau. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}\,\,\,\,\begin{array}{*{20}{c}} 0\\ 0\\ 0\\ 1 \end{array}} \right]\)
D. Cả 3 câu đều sai
30/08/2021 3 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
- 5 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.0K
- 66
- 25
-
43 người đang thi
- 565
- 18
- 25
-
51 người đang thi
- 475
- 15
- 25
-
62 người đang thi
- 402
- 10
- 25
-
67 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận