Câu hỏi: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&1&1\\ 2&3&1\\ 3&4&5 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&1&m\\ 3&5&0\\ { - 4}&0&0 \end{array}} \right]\) . Tính m để A khả nghịch.

204 Lượt xem
30/08/2021
3.1 8 Đánh giá

A. \(\forall\)

B. \(\forall m\)

C. \(m \ne 20\)

D. \(m \ne 0\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 4: Cho hai ma trận \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 2&0&4 \end{array}} \right]\) và \(B = \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 2&0&0\\ 3&4&0 \end{array}} \right]\) . Khẳng định nào sau đây đúng?

A. \(AB = \left[ {\begin{array}{*{20}{c}} {14}&{13}\\ {14}&{18} \end{array}} \right]\)

B. \(AB = \left[ {\begin{array}{*{20}{c}} {14}&{13}&0\\ {14}&{18}&1 \end{array}} \right]\)

C. BA xác định nhưng AB không xác định

D. \(AB = \left[ {\begin{array}{*{20}{c}} {14}&{13}&0\\ {14}&{18}&0 \end{array}} \right]\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 5: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép biến đổi sơ cấp: Đổi chỗ cột 1 và cột 3 cho nhau. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.

A. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0\\ 0&0&0 \end{array}\,\,\,\,\begin{array}{*{20}{c}} 0\\ 0\\ 0\\ 1 \end{array}} \right]\)

D. Cả 3 câu đều sai

Xem đáp án

30/08/2021 3 Lượt xem

Xem đáp án

30/08/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 7
Thông tin thêm
  • 5 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên