Câu hỏi: Cho hàm truyền \(G(s) = \frac{2}{{{s^2} + 2s + 8}}\) , hãy lập phương trình trạng thái
A. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 2} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 2 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
B. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 1} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
C. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 2} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
D. \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ { - 2}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
Câu 1: Cho hàm truyền \(G(s) = \frac{{20}}{{{s^2} + 4s + 8}}\) , hãy lập phương trình trạng thái.
A. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 3}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
B. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 1} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
C. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 4} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
D. \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ { - 2}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
30/08/2021 2 Lượt xem
Câu 2: Xác định hàm truyền tương đương của hệ thống nối tiếp như hình vẽ: 
A. \({G_{td}}(s) = \frac{1}{{{s^2} + 5s + 2}}\)
B. \({G_{td}}(s) = \frac{{s + 2}}{{{s^2} + 5s + 6}}\)
C. \({G_{td}}(s) = \frac{1}{{{s^2} + 3s + 6}}\)
D. \({G_{td}}(s) = \frac{1}{{{s^2} + 5s + 6}}\)
30/08/2021 2 Lượt xem
Câu 3: Đặc điểm của khâu hiệu chỉnh PD (Proportional Derivative) là:
A. Làm chậm đáp ứng của hệ thống, tăng thời gian quá độ
B. Làm chậm đáp ứng của hệ thống, giảm thời gian quá độ
C. Làm nhanh đáp ứng của hệ thống, giảm thời gian quá độ
D. Làm nhanh đáp ứng của hệ thống, tăng thời gian quá độ
30/08/2021 3 Lượt xem
Câu 4: Số lần đổi dấu của số hạng ở cột 1 bảng Routh bằng số nghiệm:
A. Có phần thực âm
B. Có phần thực dương
C. Nghiệm phức của phương trình
D. Có phần thực bằng 0
30/08/2021 1 Lượt xem
Câu 5: Cho hệ thống có hàm truyền tương đương sau: ![]()
A. Hệ thống ổn định, có 2 nghiệm cực bên phải mặt phẳng phức
B. Hệ thống ổn định, có 2 nghiệm cực nằm bên trái mặt phẳng phức
C. Hệ thống không ổn định, có 2 nghiệm cực bên phải mặt phẳng phức, 1 nghiệm cực bên trái mặt phẳng phức
D. Hệ thống không ổn định, có 1 nghiệm bên phải mặt phẳng phức, 2 nghiệm cực bên trái mặt phẳng phức
30/08/2021 3 Lượt xem
Câu 6: Cho hệ thống có cấu trúc sau: ![]()
A. \({G_{td}}(s) = \frac{{3s + 10}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
B. \({G_{td}}(s) = \frac{{3s + 9}}{{5{s^3} + 16{s^2} + 11s + 11}}\)
C. \({G_{td}}(s) = \frac{{3s + 9}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
D. \({G_{td}}(s) = \frac{{s + 9}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
30/08/2021 4 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm Lý thuyết điều khiển tự động - Phần 8
- 58 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm Lý thuyết điều khiển tự động có đáp án
- 1.5K
- 143
- 25
-
68 người đang thi
- 1.5K
- 160
- 20
-
45 người đang thi
- 1.4K
- 112
- 25
-
12 người đang thi
- 803
- 77
- 25
-
98 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận