Câu hỏi:

Cho hàm số y= f(x) liên tục trên R và có bảng biến thiên như sau

Biết f(0) < 0, hỏi phương trình f(|x|) = f(0) có bao nhiêu nghiệm?

519 Lượt xem
05/11/2021
3.4 9 Đánh giá

A. 4

B. 2

C. 3

D. 5

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?

A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)

B. Hàm số nghịch biến trên khoảng (0;1)

C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)

D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 3:

Trong không gian Oxyz, cho \(A\left( { - 2;1;1} \right),{\rm{ }}B\left( {0; - 1;1} \right)\). Phương trình mặt cầu đường kính AB là

A. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 8\)

B. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 8\)

D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 5:

Cho hai số phức \({z_1} = 1 + 2i,{\rm{ }}{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)

B. \(z = \frac{1}{5} + \frac{7}{5}i\)

C. \(z = \frac{1}{5} - \frac{7}{5}i\)

D. \(z =  - \frac{1}{{10}} + \frac{7}{{10}}i\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh