Câu hỏi:

Cho hàm số y= f(x) liên tục trên R và có bảng biến thiên như sau

Biết f(0) < 0, hỏi phương trình f(|x|) = f(0) có bao nhiêu nghiệm?

511 Lượt xem
05/11/2021
3.4 9 Đánh giá

A. 4

B. 2

C. 3

D. 5

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho tích phân \(I = \int\limits_1^e {\frac{{\sqrt {1 + \ln x} }}{x}dx} \). Đổi biến \(t = \sqrt {1 + \ln x} \) ta được kết quả nào sau đây?

A. \(I = \int\limits_1^{\sqrt 2 } {{t^2}dt} \)

B. \(I = 2\int\limits_1^{\sqrt 2 } {{t^2}dt} \)

C. \(I = 2\int\limits_1^2 {{t^2}dt} \)

D. \(I = 2\int\limits_1^{\sqrt 2 } {tdt} \)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 2:

Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là

A. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{4}\)

B. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z + 3}}{4}\)

C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 4}}\)

D. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z - 1}}{{ - 4}}\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Cho hai số phức \({z_1} = 1 + 2i,{\rm{ }}{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)

B. \(z = \frac{1}{5} + \frac{7}{5}i\)

C. \(z = \frac{1}{5} - \frac{7}{5}i\)

D. \(z =  - \frac{1}{{10}} + \frac{7}{{10}}i\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh