Câu hỏi:

Cho các số thực dương a, b thỏa mãn \(\log a = x,\log b = y\). Tính \(P = \log \left( {{a^2}{b^3}} \right)\).

384 Lượt xem
05/11/2021
3.6 9 Đánh giá

A. P = 6xy

B. \(P = {x^2}{y^3}\)

C. \(P = {x^2} + {y^3}\)

D. P = 2x + 3y

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?

A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)

B. Hàm số nghịch biến trên khoảng (0;1)

C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)

D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 2:

Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là

A. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{4}\)

B. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z + 3}}{4}\)

C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 4}}\)

D. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z - 1}}{{ - 4}}\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 5:

Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây

A. \(y =  - {x^3} + 3x + 1\)

B. \(y = \frac{{x + 1}}{{x - 1}}\)

C. \(y = \frac{{x - 1}}{{x + 1}}\)

D. \(y = {x^3} - 3{x^2} - 1\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh