Câu hỏi:
Cho các số thực dương a, b thỏa mãn \(\log a = x,\log b = y\). Tính \(P = \log \left( {{a^2}{b^3}} \right)\).
A. P = 6xy
B. \(P = {x^2}{y^3}\)
C. \(P = {x^2} + {y^3}\)
D. P = 2x + 3y
Câu 1: Cho 0 < b < a < 1, mệnh đề nào dưới đây đúng?
A. \({\log _b}a < {\log _a}b\)
B. \({\log _b}a < 0\)
C. \({\log _b}a > {\log _a}b\)
D. \({\log _a}b < 1\)
05/11/2021 13 Lượt xem
Câu 2: Cho các số thực a, b thỏa mãn điều kiện 0 < b < a < 1. Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\frac{{4\left( {3b - 1} \right)}}{9} + 8\log _{\frac{b}{a}}^2a - 1\).
A. 6
B. \(3\sqrt[3]{2}\)
C. 8
D. 7
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
Câu 4: Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?
6184b978a4d6a.png)
6184b978a4d6a.png)
A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)
B. Hàm số nghịch biến trên khoảng (0;1)
C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)
05/11/2021 9 Lượt xem
Câu 5: Một hình trụ có bán kính đáy bằng a, mặt phẳng qua trục cắt hình trụ theo một thiết diện có diện tích bằng 8a2. Tính diện tích xung quanh của hình trụ.
A. \(4\pi {a^2}\)
B. \(8\pi {a^2}\)
C. \(16\pi {a^2}\)
D. \(2\pi {a^2}\)
05/11/2021 7 Lượt xem
Câu 6: Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 0. Biết \(\int\limits_0^1 {{f^2}\left( x \right)dx} = \frac{9}{2}\) và \(\int\limits_0^1 {f'\left( x \right)\cos \frac{{\pi x}}{2}dx} = \frac{{3\pi }}{4}\). Tích phân \(\int\limits_0^1 {f\left( x \right)dx} \) bằng.
A. \(\frac{6}{\pi }\)
B. \(\frac{2}{\pi }\)
C. \(\frac{4}{\pi }\)
D. \(\frac{1}{\pi }\)
05/11/2021 7 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
51 người đang thi
- 1.2K
- 122
- 50
-
23 người đang thi
- 1.0K
- 75
- 50
-
74 người đang thi
- 846
- 35
- 50
-
91 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận