Câu hỏi:
Cho các số thực dương a, b thỏa mãn \(\log a = x,\log b = y\). Tính \(P = \log \left( {{a^2}{b^3}} \right)\).
A. P = 6xy
B. \(P = {x^2}{y^3}\)
C. \(P = {x^2} + {y^3}\)
D. P = 2x + 3y
Câu 1: Hàm số \(f\left( x \right) = \cos \left( {4x + 7} \right)\) có một nguyên hàm là
A. \( - \sin \left( {4x + 7} \right) + x\)
B. \(\frac{1}{4}\sin \left( {4x + 7} \right) - 3\)
C. \(\sin \left( {4x + 7} \right) - 1\)
D. \( - \frac{1}{4}\sin \left( {4x + 7} \right) + 3\)
05/11/2021 9 Lượt xem
Câu 2: Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là
A. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{4}\)
B. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z + 3}}{4}\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 4}}\)
D. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z - 1}}{{ - 4}}\)
05/11/2021 9 Lượt xem
Câu 3: Hình lập phương có đường chéo của mặt bên bằng 4 cm. Tính thể tích khối lập phương đó.
A. \(8\sqrt 2 {\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
B. \(16\sqrt 2 {\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
C. \(8{\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
D. \(2\sqrt 2 {\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
05/11/2021 7 Lượt xem
Câu 4: Cho hình hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện chứa C và A'. Tính \(\frac{{{V_1}}}{{{V_2}}}.\)
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{24}}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{17}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{12}}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{17}{{24}}\)
05/11/2021 7 Lượt xem
Câu 5: Cho hàm số f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là
6184b9792a491.png)
6184b9792a491.png)
A. 3
B. 1
C. 2
D. 0
05/11/2021 8 Lượt xem
Câu 6: Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?
6184b978a4d6a.png)
6184b978a4d6a.png)
A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)
B. Hàm số nghịch biến trên khoảng (0;1)
C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)
05/11/2021 9 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
65 người đang thi
- 1.3K
- 122
- 50
-
28 người đang thi
- 1.2K
- 75
- 50
-
36 người đang thi
- 977
- 35
- 50
-
67 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận