Câu hỏi:
Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
Câu 1: Cho hàm số f(x) có f(0) = -1 và \(f'\left( x \right) = x\left( {6 + 12x + {e^{ - x}}} \right),\forall x \in R\). Khi đó \(\int\limits_0^1 {f\left( x \right)} {\rm{d}}x\) bằng
A. 3e
B. 3e-1
C. 4-3e-1
D. -3e-1
05/11/2021 5 Lượt xem
Câu 2: Cho hàm số y = f(x) xác định, liên tục trên đoạn [-4;0] và có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực tiểu tại điểm nào dưới đây?
6184b972652ac.png)
6184b972652ac.png)
A. x = -1
B. x = -3
C. x = 2
D. x = -2
05/11/2021 8 Lượt xem
Câu 3: Nghiệm của phương trình \({\log _2}\left( {3{\rm{x}} - 2} \right) = 3\) là
A. x = 8
B. \(x = \frac{{10}}{3}\)
C. x = 1
D. \(x = \frac{1}{3}\)
05/11/2021 7 Lượt xem
05/11/2021 5 Lượt xem
05/11/2021 6 Lượt xem
Câu 6: Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số \(y = - {x^2} - x + 1,\,\,y = 2,x = - 1,x = 1\) được tính bởi công thức nào dưới đây?
A. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x + 3){\rm{d}}x\)
B. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x - 1){\rm{d}}x\)
C. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x + 1){\rm{d}}x\)
D. \(S = \int\limits_{ - 1}^1 {({x^2}} + x + 1){\rm{d}}x\)
05/11/2021 8 Lượt xem
- 286 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.3K
- 122
- 50
-
33 người đang thi
- 1.2K
- 75
- 50
-
72 người đang thi
- 974
- 35
- 50
-
98 người đang thi
- 862
- 31
- 50
-
47 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận