Câu hỏi:
Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
Câu 1: Hai bạn A và B mỗi bạn viết ngẫu nhiên một số tự nhiên gồm ba chữ số đôi một khác nhau. Xác suất để các chữ số có mặt ở hai số bạn A và B viết giống nhau bằng
A. \(\frac{{31}}{{2916}}\)
B. \(\frac{1}{{648}}\)
C. \(\frac{1}{{108}}\)
D. \(\frac{{25}}{{2916}}\)
05/11/2021 10 Lượt xem
Câu 2: Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:
6184b972b65c9.png)
Phương trình f(x) = 4 có bao nhiêu nghiệm thực?
6184b972b65c9.png)
A. 4
B. 2
C. 3
D. 0
05/11/2021 6 Lượt xem
Câu 3: Cho cấp số nhân (un) với u1 = 2 và u4 = 250. Công bội của cấp số cộng đã cho bằng
A. 125
B. 5
C. \(\frac{1}{5}\)
D. \(\frac{{125}}{3}\)
05/11/2021 8 Lượt xem
Câu 4: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] lần lượt là
A. 40 và 8
B. 40 và -8
C. 15 và -41
D. 40 và -41
05/11/2021 8 Lượt xem
Câu 5: Cho \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = - 2\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 7\), khi đó \(\int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]{\rm{d}}x} \) bằng
A. -12
B. 25
C. -25
D. 17
05/11/2021 6 Lượt xem
Câu 6: Cho a là số thực dương tùy ý, \(\ln \frac{{\rm{e}}}{{{a^2}}}\) bằng
A. \(2\left( {1 + \ln a} \right)\)
B. \(1 - \frac{1}{2}\ln a\)
C. \(2\left( {1 - \ln a} \right)\)
D. \(1 - 2\ln a\)
05/11/2021 8 Lượt xem
- 287 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.4K
- 122
- 50
-
60 người đang thi
- 1.2K
- 75
- 50
-
75 người đang thi
- 1.0K
- 35
- 50
-
95 người đang thi
- 906
- 31
- 50
-
32 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận