Câu hỏi: Cho các phương trình sau:  \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1;\) \({x^2} + {\left( {2y - 1} \right)^2} + {z^2} = 4;\) \({x^2} + {y^2} + {z^2} + 1 = 0;\) \({\left( {2x + 1} \right)^2} + {\left( {2y - 1} \right)^2} + 4{z^2} = 16.\) Số phương trình là phương trình mặt cầu là:

226 Lượt xem
18/11/2021
3.3 12 Đánh giá

A. 4

B. 3

C. 2

D. 1

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt  \(\left\{ \matrix{ u = f\left( x \right) \hfill \cr {\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:

A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)

B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)

C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)

D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 3: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:

A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)

B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)

C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)

D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)

Xem đáp án

18/11/2021 1 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Cho 3 điểm \(M(0;1;0),N(0;1; - 4),P(2;4;0)\). Nếu \(MNPQ\) là hình bình hành thì tọa độ của điểm \(Q\) là

A. \(Q = \left( { - 2; - 3;4} \right)\)

B. \(Q = \left( {2;3;4} \right)\) 

C. \(Q = \left( {3;4;2} \right)\)

D. \(Q = \left( { - 2; - 3; - 4} \right)\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh