Câu hỏi: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?

190 Lượt xem
18/11/2021
3.7 19 Đánh giá

A. Tam giác ABC là tam giác đều.

B. O là tâm đường tròn ngoại tiếp tam giác ABC

C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).

D. O là trọng tâm tam giác ABC

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm nguyên hàm của hàm số \(f(x) = x + \cos 2x\).

A. \(\int {f(x)dx = \frac{{{x^2}}}{2} - \frac{1}{2}\sin 2x + C} \)

B. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  - \sin 2x + C.\)

C. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \frac{1}{2}sin2x + C.\)

D. \(\int {f(x)dx = \frac{{{x^2}}}{2}}  + \sin 2x + C.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3; - 1;1} \right),B\left( {1;2; - 1} \right)\). Mặt cầu có tâm A và đi qua điểm B có phương trình là:

A. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 15\)

B. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 17\)

C. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 17\)

D. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 15\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh