Câu hỏi:

Trong mặt phẳng tọa độ \(Oxy\),  cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.

276 Lượt xem
05/11/2021
3.5 6 Đánh giá

A. \(A'\left( {3;7} \right)\)

B. \(A'\left( {3;1} \right)\)

C. \(A'\left( {4;7} \right)\)

D. \(A'\left( {1;6} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Tìm tọa độ giao điểm I của đồ thị hàm số \(y =  - 4{x^3} + 3x\) với đường thẳng \(y = x - 2\)

A. \(I\left( {2;2} \right)\)

B. \(I\left( {1;1} \right)\)

C. \(I\left( {2;1} \right)\)

D. \(I\left( {1; - 1} \right)\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 4:

Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 6:

Trong các hàm số sau đây, hàm số nào nghịch biến trên \(\mathbb{R}\)?

A. \(y = {\left( {\dfrac{1}{2}} \right)^{ - x}}\)

B. \(y = {\left( {\dfrac{2}{e}} \right)^x}\)

C. \(y = {\left( {\sqrt 3 } \right)^x}\)

D. \(y = {\left( {\dfrac{\pi }{3}} \right)^x}\)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
Thông tin thêm
  • 14 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh