Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( {1; - 2; - 3} \right),B\left( { - 1;4;1} \right)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?
A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)
B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)
C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}.\)
D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}.\)
Câu 1: Tập nghiệm của bất phương trình \({\log _3}\left( {{x^2} + 2} \right) \le 3\) là
A. \(S = ( - \infty ; - 5] \cup {\rm{[}}5; + \infty ).\)
B. S = Ø
C. S = R
D. S = [-5;5]
05/11/2021 7 Lượt xem
Câu 2: Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên (hình vẽ). Khẳng định nào sau đây đúng?
6184b97506648.png)
6184b97506648.png)
A. Hàm số có giá trị cực tiểu bằng -1
B. Hàm số có giá trị cực tiểu tại x = 0
C. Hàm số đạt cực đại tại x = 0
D. Hàm số có đúng hai điểm cực trị.
05/11/2021 8 Lượt xem
Câu 3: Cho hàm số \(y = \sqrt {{x^2} + 3} - x\ln x\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1; 2]. Khi đó tích M.m bằng
A. \(2\sqrt 7 + 4\ln 2.\)
B. \(2\sqrt 7 + 4\ln 5.\)
C. \(2\sqrt 7 - 4\ln 5.\)
D. \(2\sqrt 7 - 4\ln 2.\)
05/11/2021 8 Lượt xem
Câu 4: Tập nghiệm của bất phương trình \({3^{2x - 1}} > 27\) là
A. \(\left( {2; + \infty } \right)\)
B. \(\left( {3; + \infty } \right)\)
C. \(\left( {\frac{1}{3}; + \infty } \right)\)
D. \(\left( {\frac{1}{2}; + \infty } \right)\)
05/11/2021 8 Lượt xem
Câu 5: Cho khối chóp S.ABC có ABC là tam giác vuông cân tại C, CA = a, (SAB) vuông góc với (ABC) và diện tích tam giác SAB bằng \(\frac{{{a^2}}}{2}\). Tính độ dài đường cao SH của khối chóp S.ABC.
A. a
B. 2a
C. \(a\sqrt 2 .\)
D. \(\frac{{a\sqrt 2 }}{2}.\)
05/11/2021 7 Lượt xem
Câu 6: Có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 năm và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.
A. \(\frac{4}{{63}}.\)
B. \(\frac{1}{{252}}.\)
C. \(\frac{8}{{63}}.\)
D. \(\frac{1}{{945}}.\)
05/11/2021 7 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
- 35 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
51 người đang thi
- 1.0K
- 121
- 50
-
25 người đang thi
- 906
- 75
- 50
-
21 người đang thi
- 618
- 31
- 50
-
46 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận