Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\text{ }\!\!\Delta\!\!\text{ }:\frac{x}{1}=\frac{y+3}{1}=\frac{z}{2}\). Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt{2}\) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I.
A. \(I\left( 1;-2;2 \right);\text{ }I\left( 5;2;10 \right)\)
B. \(I\left( 1;-2;2 \right);\text{ }I\left( 0;-3;0 \right)\)
C. \(I\left( 5;2;10 \right);\text{ }I\left( 0;-3;0 \right)\)
D. \(I\left( 1;-2;2 \right);\text{ }I\left( -1;2;-2 \right)\)
Câu 1: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-6z-2=0\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa trục Oy và cắt mặt cầu (S) theo thiết diện là một đường tròn có chu vi bằng \(8\pi \).
A. 3x+z=0
B. 3x+z+2=0
C. 3x-z=0
D. x-3z=0
18/11/2021 1 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz , cho điểm A(1;-1;1) và mặt phẳng \((P):-x+2 y-2 z+11=0\). Gọi (Q) là mặt phẳng song song (P) và cách A một khoảng bằng 2. Tìm phương trình mặt phẳng (Q).
A. \((Q): x-2 y+2 z+1=0\, và \,(Q):-x+2 y-2 z+11=0\)
B. \((Q):-x+2 y-2 z+11=0\)
C. \((Q): x-2 y+2 z+1=0\)
D. \((Q): x-2 y+2 z-11=0\)
18/11/2021 1 Lượt xem
Câu 3: Trong không gian với hệ tọa độ Oxyz , cho A(1;2;0); B(3;-1;1), C(1;1;1) . Tính diện tích S của tam giác ABC
A. \(\sqrt2\)
B. 1
C. \(1\over2\)
D. \(\sqrt3\)
18/11/2021 1 Lượt xem
Câu 4: Trong không gian Oxyz cho hai điểm C(0;0;3) và M (-1;3;2) . Mặt phẳng (P) qua C, M đồng thời chắn trên các nửa trục dương Ox, Oy các đoạn thẳng bằng nhau. (P) có phương trình là :
A. \((P): x+y+z-3=0\)
B. \((P): x+y+2 z-1=0\)
C. \((P): x+y+z-6=0\)
D. \((P): x+y+2 z-6=0\)
18/11/2021 1 Lượt xem
Câu 5: Biết F(x) là một nguyên hàm của hàm số \(f(x)=\frac{x}{\sqrt{8-x^{2}}}\) thoả mãn \(F(2)=0\) . Khi đó phương trình F(x)=x có nghiệm là
A. x = 1
B. \(x=1-\sqrt{3}\)
C. x = -1
D. x = 0
18/11/2021 2 Lượt xem
Câu 6: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(S\left( 0;0;1 \right)\). Hai điểm \(M\left( m;0;0 \right);N\left( 0;n;0 \right)\) thay đổi sao cho m + n = 1 và m > 0; n > 0. Biết rằng mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định. Bán kính mặt cầu đó bằng: \(R=\sqrt{2}\).
A. \(R=\sqrt{2}\)
B. R = 2
C. R = 1
D. \(R=\frac{1}{2}\)
18/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Hoàng Văn Thụ
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 580
- 0
- 40
-
36 người đang thi
- 611
- 13
- 40
-
96 người đang thi
- 539
- 3
- 30
-
66 người đang thi
- 518
- 3
- 30
-
12 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận