Câu hỏi: Trong không gian với hệ tọa độ Oxyz , cho bốn điểm \(A(0 ; 0 ;-6), B(0 ; 1 ;-8), C(1 ; 2 ;-5)\) và D(4;3;8) . Hỏi có tất cả bao nhiêu mặt phẳng cách đều bốn điểm đó?
A. 4 mặt phẳng.
B. Có vô số mặt phẳng.
C. 1 mặt phẳng.
D. 7 mặt phẳng.
Câu 1: Trong không gian với hệ tọa độ Oxyz , cho điểm A(1;-1;1) và mặt phẳng \((P):-x+2 y-2 z+11=0\). Gọi (Q) là mặt phẳng song song (P) và cách A một khoảng bằng 2. Tìm phương trình mặt phẳng (Q).
A. \((Q): x-2 y+2 z+1=0\, và \,(Q):-x+2 y-2 z+11=0\)
B. \((Q):-x+2 y-2 z+11=0\)
C. \((Q): x-2 y+2 z+1=0\)
D. \((Q): x-2 y+2 z-11=0\)
18/11/2021 1 Lượt xem
Câu 2: Kết quả \(\int e^{\sin x} \cos x d x\) bằng
A. \(\cos x \cdot e^{\sin x}+C\)
B. \(e^{\cos x}+C\)
C. \(e^{\sin x}+C\)
D. \(e^{-\sin x}+C\)
18/11/2021 3 Lượt xem
Câu 3: Cho tứ diện ABCD biết \(A(0;-1;3);B(2;1;0),C(-1;3;3);D(1;-1;-1)\). Tính chiều cao AH của tứ diện.
A. \(\sqrt{29}\over2\)
B. \(1\over\sqrt{29}\)
C. \(\sqrt{29}\)
D. \(14\over\sqrt{29}\)
18/11/2021 1 Lượt xem
Câu 4: Xét tích phân \(I=\int_{0}^{\pi / 3} \frac{\sin 2 x}{1+\cos x} d x\) . Thực hiện phép đổi biến \(t=\cos x\), ta có thể đưa I về dạng nào sau đây?
A. \(I=-\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)
B. \(I=\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)
C. \(I=-\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)
D. \(I=\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)
18/11/2021 2 Lượt xem
Câu 5: Tung độ của điểm M thỏa mãn \( \overrightarrow {OM} = - \overrightarrow i + 2\overrightarrow j + \overrightarrow k \) là:
A. -1
B. 1
C. 2
D. -2
18/11/2021 7 Lượt xem
Câu 6: Cho \(\vec a=(1;0;-3), \vec b=(2;1;2)\). Khi đó \(|[\vec a, \vec b]|\) có giá trị là:
A. 8
B. 3
C. \(\sqrt{74}\)
D. 4
18/11/2021 0 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Hoàng Văn Thụ
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 657
- 0
- 40
-
19 người đang thi
- 698
- 13
- 40
-
37 người đang thi
- 624
- 6
- 30
-
27 người đang thi
- 599
- 7
- 30
-
39 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận