Câu hỏi:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 2z - 3 = 0\). Bán kính của mặt cầu là
A. 9
B. 27
C. 3
D. \(3\sqrt 3 \)
Câu 1: Nghiệm của bất phương trình \({\log _2}\left( {x + 1} \right) - 2{\log _4}\left( {5 - x} \right) < 1 - {\log _2}\left( {x - 2} \right)\) là:
A. 2 < x < 3
B. 1 < x < 2
C. 2 < x < 5
D. - 4 < x < 3
05/11/2021 0 Lượt xem
Câu 2: Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
05/11/2021 0 Lượt xem
Câu 3: Gọi z1; z2 là các nghiệm phức của phương trình \({z^2} - 3z + 7 = 0\). Giá trị của biểu thức \(P = \left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
A. \({\rm{ 2}}\sqrt 7 .\)
B. \({\rm{ 2}}\sqrt {14} .\)
C. \(\sqrt 7 .\)
D. \(\sqrt {14} .\)
05/11/2021 0 Lượt xem
Câu 4: Cho hàm số \(f\left( x \right) = \sqrt {{{\log }_2}\left( {3x + 4} \right)} \). Tập hợp nào sau đây là tập xác định của f(x) là
A. \(D = \left( { - 1; + \infty } \right)\)
B. \(D = \left( { - \frac{4}{3}; + \infty } \right)\)
C. \(D = \left[ { - 1; + \infty } \right)\)
D. \(D = \left[ {1; + \infty } \right)\)
05/11/2021 0 Lượt xem
Câu 5: Số giao điểm của đồ thị hàm số \(y = {x^3} + 6{x^2} + 11x + 6\) và trục hoành là
A. 1
B. 2
C. 3
D. 0
05/11/2021 0 Lượt xem
Câu 6: Cho hàm số y = f(x) có bảng biến thiên như sau:
6184b9971c1bf.png)
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
6184b9971c1bf.png)
A. (-1;0)
B. \(\left( { - \infty ; - 1} \right)\)
C. (0;1)
D. \(\left( {0; + \infty } \right)\)
05/11/2021 0 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
41 người đang thi
- 1.2K
- 122
- 50
-
83 người đang thi
- 1.0K
- 75
- 50
-
22 người đang thi
- 858
- 35
- 50
-
54 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận