Câu hỏi:
Cho khối nón có chiều cao h=6 và bán kính đáy r=5.Thể tích của khối nón đã cho bằng
A. \(50\pi\)
B. \(45\pi\)
C. \(40\pi\)
D. \(30\pi\)
Câu 1: Cho tam giác ABC vuông tại A có AB = a , AC = 3a .Khi quay tam giác quanh cạnh huyền BC thì đường gấp khúc BAC tạo thành hai hình nón có chung đáy .Tổng diện tích xung quanh của hai hình nón đó là
A. \(\frac{{12\pi {a^2}}}{{\sqrt {10} }}\)
B. \(\frac{{4\pi {a^2}}}{{\sqrt {10} }}\)
C. \(\frac{{6\pi {a^2}}}{{\sqrt {10} }}\)
D. \(\frac{{10\pi {a^2}}}{{\sqrt {10} }}\)
05/11/2021 0 Lượt xem
Câu 2: Số giao điểm của đồ thị hàm số \(y = {x^3} + 6{x^2} + 11x + 6\) và trục hoành là
A. 1
B. 2
C. 3
D. 0
05/11/2021 0 Lượt xem
Câu 3: Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
05/11/2021 0 Lượt xem
Câu 4: Cho hàm bậc bốn y = f(x) có đồ thị trong hình bên. Số nghiệm của phương trình f(x) = 1 là
6184b9979a08b.png)
6184b9979a08b.png)
A. 1
B. 2
C. 3
D. 4
05/11/2021 0 Lượt xem
Câu 5: Cho số phức \(z = a + bi{\rm{ }}\left( {a;{\rm{ }}b \in R} \right)\) thỏa mãn \(iz = 2\left( {\bar z - 1 - i} \right).\) Tính S = ab.
A. S = -4
B. S = 4
C. S = 2
D. S = -2
05/11/2021 0 Lượt xem
Câu 6: Đánh số thứ tự cho 20 bạn học sinh lần lượt từ số thứ tự 1 đến số thứ tự 20. Chọn ngẫu nhiên ba bạn học sinh từ 20 bạn học sính đó. Tính xác suất để ba bạn được chọn không có hai bạn nào được đánh số thứ tự liên tiếp.
A. \(\frac{{799}}{{1140}}\)
B. \(\frac{{139}}{{190}}\)
C. \(\frac{{68}}{{95}}\)
D. \(\frac{{27}}{{95}}\)
05/11/2021 0 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 285
- 50
-
35 người đang thi
- 1.3K
- 122
- 50
-
57 người đang thi
- 1.1K
- 75
- 50
-
55 người đang thi
- 901
- 35
- 50
-
89 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận