Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a,AD = 2a, SA vuông góc với mặt phẳng đáy và SA = a (tham khảo hình vẽ). Gọi M là trung điểm của CD. Khoảng cách giữa hai đường thẳng SD, BM bằng

124 Lượt xem
05/11/2021
3.0 6 Đánh giá

A. \(\frac{{a\sqrt {21} }}{{21}}\)

B. \(\frac{{2a\sqrt {21} }}{{21}}\)

C. \(\frac{{2a\sqrt 7 }}{7}\)

D. \(\frac{{a\sqrt 7 }}{7}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Diện tích hình phẳng giới hạn bởi các đường y = \(3{x^2} - 2{x^3}\); y = 0; x = 0; x = \(\frac{3}{2}\) được tính bởi công thức nào dưới đây

A. \(S=\int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

B. \(S= \pi \int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

C. \(S=\int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

D. \(S=\pi \int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 4:

Cho hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = - {x^2} + 3x - 2\), trục hoành và hai đường thẳng x = 1, x = 2. Quay (H) xung quanh trục hoành được khối tròn xoay có thể tích là

A. \(V = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|} \,{\rm{d}}x\)

B. \(V = \int\limits_1^2 {{{\left| {{x^2} - 3x + 2} \right|}^2}} \,{\rm{d}}x\)

C. \(V = \pi \int\limits_1^2 {{{\left( {{x^2} - 3x + 2} \right)}^2}} \,{\rm{d}}x\)

D. \(V = \pi \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|} \,{\rm{d}}x\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Tính đạo hàm của hàm số \(y = x{e^{2{\rm{x}} + 1}}\)

A. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}} + 1}}\)

B. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}}}}\)

C. \(y' = 2{e^{2x + 1}}\)

D. \(y' = {e^{2x + 1}}\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh