Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a,AD = 2a, SA vuông góc với mặt phẳng đáy và SA = a (tham khảo hình vẽ). Gọi M là trung điểm của CD. Khoảng cách giữa hai đường thẳng SD, BM bằng
A. \(\frac{{a\sqrt {21} }}{{21}}\)
B. \(\frac{{2a\sqrt {21} }}{{21}}\)
C. \(\frac{{2a\sqrt 7 }}{7}\)
D. \(\frac{{a\sqrt 7 }}{7}\)
Câu 1: Cho tam giác ABC vuông tại A có AB = a , AC = 3a .Khi quay tam giác quanh cạnh huyền BC thì đường gấp khúc BAC tạo thành hai hình nón có chung đáy .Tổng diện tích xung quanh của hai hình nón đó là
A. \(\frac{{12\pi {a^2}}}{{\sqrt {10} }}\)
B. \(\frac{{4\pi {a^2}}}{{\sqrt {10} }}\)
C. \(\frac{{6\pi {a^2}}}{{\sqrt {10} }}\)
D. \(\frac{{10\pi {a^2}}}{{\sqrt {10} }}\)
05/11/2021 0 Lượt xem
Câu 2: Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
05/11/2021 0 Lượt xem
Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC = 2a{\rm{ ; }}SA = a\sqrt 6 \), SA vuông góc với mặt phẳng đáy. Góc giữa SD và mặt phẳng (ABCD) bằng
A. 30o
B. 45o
C. 60o
D. 90o
05/11/2021 0 Lượt xem
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình thang với hai đáy thỏa mãn 2CD = 3AB. Biết thể tích của khối chóp S.ABD bằng 4V và thể tích của khối chóp S.CDMN bằng \(\frac{{126V}}{{25}}\), trong đó M, N lần lượt nằm trên cạnh SA, SB sao cho MN song song với AB. Tỉ số \(\frac{{SM}}{{MA}}\) bằng:
A. \(\frac{2}{3}\)
B. \(\frac{3}{2}\)
C. \(\frac{3}{4}\)
D. \(\frac{4}{3}\)
05/11/2021 0 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;-3); B(-1;4;1) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?
A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)
B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)
C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\)
D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}\)
05/11/2021 0 Lượt xem
Câu 6: Cho hàm số y = f(x) có bảng biến thiên như sau:
6184b99745f34.png)
Hàm số đã cho đạt cực tiểu tại
6184b99745f34.png)
A. x = -2
B. x = 2
C. x = -1
D. x = 1
05/11/2021 0 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
82 người đang thi
- 1.2K
- 122
- 50
-
25 người đang thi
- 1.0K
- 75
- 50
-
45 người đang thi
- 858
- 35
- 50
-
32 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận