Câu hỏi:

Gọi z1; z2 là các nghiệm phức của phương trình \({z^2} - 3z + 7 = 0\). Giá trị của biểu thức \(P = \left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng

121 Lượt xem
05/11/2021
4.1 10 Đánh giá

A. \({\rm{ 2}}\sqrt 7 .\)

B. \({\rm{ 2}}\sqrt {14} .\)

C. \(\sqrt 7 .\)

D. \(\sqrt {14} .\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Cho \(I = \int {\frac{{{{\ln }^5}x}}{{2x}}dx} \). Giả sử đặt t = ln x. Khi đó ta có:

A. \(I = 2\int {{t^6}dt} \)

B. \(I = 2\int {{t^5}dt} \)

C. \(I = \frac{1}{2}\int {{t^6}dt} \)

D. \(I = \frac{1}{2}\int {{t^5}dt} \)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 3:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A. \(y = {x^3} - 3x\)

B. \(y = - {x^3} + 3x\)

C. \(y = {x^4} - 2{x^2}\)

D. \(y = - {x^4} + 2{x^2}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 4:

Cho tam giác ABC vuông tại A có AB = a , AC = 3a .Khi quay tam giác  quanh cạnh huyền BC thì đường gấp khúc BAC tạo thành hai hình nón có chung đáy .Tổng diện tích xung quanh của  hai hình nón đó là

A. \(\frac{{12\pi {a^2}}}{{\sqrt {10} }}\)

B. \(\frac{{4\pi {a^2}}}{{\sqrt {10} }}\)

C. \(\frac{{6\pi {a^2}}}{{\sqrt {10} }}\)

D. \(\frac{{10\pi {a^2}}}{{\sqrt {10} }}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 5:

Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?

A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)

D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Diện tích hình phẳng giới hạn bởi các đường y = \(3{x^2} - 2{x^3}\); y = 0; x = 0; x = \(\frac{3}{2}\) được tính bởi công thức nào dưới đây

A. \(S=\int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

B. \(S= \pi \int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

C. \(S=\int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

D. \(S=\pi \int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh