Câu hỏi:
Gọi z1; z2 là các nghiệm phức của phương trình \({z^2} - 3z + 7 = 0\). Giá trị của biểu thức \(P = \left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
A. \({\rm{ 2}}\sqrt 7 .\)
B. \({\rm{ 2}}\sqrt {14} .\)
C. \(\sqrt 7 .\)
D. \(\sqrt {14} .\)
Câu 1: Cho hình trụ có hai đường tròn đáy (O;R) và (O';R), chiều cao \(h = \sqrt 3 R\). Đoạn thẳng AB có hai đầu mút nằm trên hai đường tròn đáy hình trụ sao cho góc hợp bởi AB và trục của hình trụ là \(\alpha = {30^0}\). Thể tích tứ diện ABOO' là
A. \(\frac{{3{R^3}}}{2}.\)
B. \(\frac{{3{R^3}}}{4}.\)
C. \(\frac{{{R^3}}}{4}.\)
D. \(\frac{{{R^3}}}{2}.\)
05/11/2021 0 Lượt xem
Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a,AD = 2a, SA vuông góc với mặt phẳng đáy và SA = a (tham khảo hình vẽ). Gọi M là trung điểm của CD. Khoảng cách giữa hai đường thẳng SD, BM bằng
6184b99666ff7.png)
6184b99666ff7.png)
A. \(\frac{{a\sqrt {21} }}{{21}}\)
B. \(\frac{{2a\sqrt {21} }}{{21}}\)
C. \(\frac{{2a\sqrt 7 }}{7}\)
D. \(\frac{{a\sqrt 7 }}{7}\)
05/11/2021 0 Lượt xem
Câu 3: Trong không gian Oxyz, cho điểm B(-1;0;8) và điểm A(4;3;5). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
A. - 5x - 3y + 3z - 14 = 0
B. - 10x - 6y + 6z + 15 = 0
C. - 10x - 6y + 6z - 15 = 0
D. \( - 5x - 3y + 3z + \frac{{15}}{2} = 0\)
05/11/2021 0 Lượt xem
Câu 4: Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
05/11/2021 0 Lượt xem
Câu 5: Cho a là số thực dương a, b, c khác 1 thỏa mãn \({\log _a}c + {\log _b}c = {\log _a}2020.{\log _b}c\). Mệnh đề nào dưới đây đúng?
A. abc = 2020
B. ac = 2020
C. bc = 2020
D. ab = 2020
05/11/2021 0 Lượt xem
Câu 6: Diện tích hình phẳng giới hạn bởi các đường y = \(3{x^2} - 2{x^3}\); y = 0; x = 0; x = \(\frac{3}{2}\) được tính bởi công thức nào dưới đây
A. \(S=\int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)
B. \(S= \pi \int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)
C. \(S=\int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)
D. \(S=\pi \int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)
05/11/2021 0 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 286
- 50
-
92 người đang thi
- 1.3K
- 122
- 50
-
45 người đang thi
- 1.1K
- 75
- 50
-
88 người đang thi
- 956
- 35
- 50
-
54 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận