Câu hỏi:

Cho số phức \(z = a + bi{\rm{ }}\left( {a;{\rm{ }}b \in R} \right)\) thỏa mãn \(iz = 2\left( {\bar z - 1 - i} \right).\) Tính S = ab.

133 Lượt xem
05/11/2021
3.3 6 Đánh giá

A. S = -4

B. S = 4

C. S = 2

D. S = -2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 4:

Tính đạo hàm của hàm số \(y = x{e^{2{\rm{x}} + 1}}\)

A. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}} + 1}}\)

B. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}}}}\)

C. \(y' = 2{e^{2x + 1}}\)

D. \(y' = {e^{2x + 1}}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Trong không gian Oxyz, cho ba điểm \(A\left( {3; - 1;0} \right);B\left( { - 2;5;1} \right);C\left( { - 1; - 1;4} \right).\) Đường thẳng d đi qua  đi qua A và song song với BC có phương trình tham số là

A. \(d:\left\{ \begin{array}{l} x = 3 - 2t\\ y = - 1 + 5t\\ z = t \end{array} \right.\)

B. \(d:\left\{ \begin{array}{l} x = 3 - t\\ y = - 1 - t\\ z = 4t \end{array} \right.\)

C. \(d:\left\{ \begin{array}{l} x = 3 + t\\ y = - 1 - 6t\\ z = 3t \end{array} \right.\)

D. \(d:\left\{ \begin{array}{l} x = 3 - 3t\\ y = - 1 + 4t\\ z = 5t \end{array} \right.\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh