Câu hỏi:

Trong không gian Oxyz, cho ba điểm \(A\left( {3; - 1;0} \right);B\left( { - 2;5;1} \right);C\left( { - 1; - 1;4} \right).\) Đường thẳng d đi qua  đi qua A và song song với BC có phương trình tham số là

98 Lượt xem
05/11/2021
3.1 7 Đánh giá

A. \(d:\left\{ \begin{array}{l} x = 3 - 2t\\ y = - 1 + 5t\\ z = t \end{array} \right.\)

B. \(d:\left\{ \begin{array}{l} x = 3 - t\\ y = - 1 - t\\ z = 4t \end{array} \right.\)

C. \(d:\left\{ \begin{array}{l} x = 3 + t\\ y = - 1 - 6t\\ z = 3t \end{array} \right.\)

D. \(d:\left\{ \begin{array}{l} x = 3 - 3t\\ y = - 1 + 4t\\ z = 5t \end{array} \right.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Diện tích hình phẳng giới hạn bởi các đường y = \(3{x^2} - 2{x^3}\); y = 0; x = 0; x = \(\frac{3}{2}\) được tính bởi công thức nào dưới đây

A. \(S=\int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

B. \(S= \pi \int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

C. \(S=\int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

D. \(S=\pi \int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;-3); B(-1;4;1) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?

A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\)

D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 5:

Tập xác định của hàm số sau \(f\left( x \right) = \sqrt {{{\log }_2}\frac{{3 - 2x - {x^2}}}{{x + 1}}} \) là

A. \(D = \left[ {\frac{{ - 3 - \sqrt {17} }}{2}; - 1} \right) \cup \left[ {\frac{{ - 3 + \sqrt {17} }}{2};1} \right)\)

B. \(D = \left( { - \infty ; - 3} \right) \cup \left( { - 1;1} \right)\)

C. \(D = \left( { - \infty ;\frac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left( { - 1;\frac{{ - 3 + \sqrt {17} }}{2}} \right]\)

D. \(D = \left( { - \infty ; - 3} \right] \cup \left[ {1; + \infty } \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh