Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC = 2a{\rm{ ; }}SA = a\sqrt 6 \), SA vuông góc với mặt phẳng đáy. Góc giữa SD và mặt phẳng (ABCD) bằng 

117 Lượt xem
05/11/2021
3.0 5 Đánh giá

A. 30o

B. 45o

C. 60o

D. 90o

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;-3); B(-1;4;1) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?

A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\)

D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 5:

Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?

A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)

D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Tập nghiệm của bất phương trình \({4^x} - {5.2^{x + 1}} + 16 \le 0\) là

A. \(\left[ {1; + \infty } \right).\)

B. (1;3)

C. \(\left( {1; + \infty } \right).\)

D. [1;3]

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh