Câu hỏi:

Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?

322 Lượt xem
18/11/2021
3.6 14 Đánh giá

A. \(y = {x^3} - 2x + 4.\)

B. \(y = \sqrt {2x - 1} .\)

C. \(y = \tan x.\)

D. \(y = \frac{{x + 2}}{{x - 1}}.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:

A. \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 4\overrightarrow {SG} \)

B. \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = \overrightarrow {SG} \)

C. \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 2\overrightarrow {SG} \)

D. \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG} \).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 2:

Tính đạo hàm của hàm số \(y = \tan 3x\).

A. \(y' =  - \frac{3}{{{{\cos }^2}3x}}\)

B. \(y' =  - \frac{3}{{si{n^2}3x}}\).

C. \(y' = \frac{{3x}}{{{{\cos }^2}3x}}\).

D. \(y' = \frac{3}{{{{\cos }^2}3x}}\).

Xem đáp án

18/11/2021 0 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Đạo hàm của hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) là

A. \(y' = \frac{{2x + 2}}{{{{\left( {x + 1} \right)}^2}}}\)

B. y' = 2x + 2

C. \(y' = \frac{{{x^2} + 2x}}{{x + 1}}\)

D. \(y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là

A. \(y' =  - \frac{3}{{{{\left( {x + 1} \right)}^2}}}\)

B. \(y' =  - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\)

C. \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).

D. \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh