Câu hỏi:

Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành

290 Lượt xem
05/11/2021
3.4 7 Đánh giá

A. 1

B. 3

C. 4

D. 2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Cho tích phân \(I = \int\limits_0^3 {\frac{x}{{1 + \sqrt {x + 1} }}dx} \). Viết dạng của I khi đặt \(t = \sqrt {x + 1} \).

A. \(\int\limits_1^2 {\left( {2{t^2} + 2t} \right)dt.} \)

B. \(\int\limits_1^2 {\left( {2{t^2} - 2t} \right)dt.} \)

C. \(\int\limits_1^2 {\left( {{t^2} - 2t} \right)dt.} \)

D. \(\int\limits_1^2 {\left( {2{t^2} - t} \right)dt.} \)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 4:

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

A. \(y = {x^4} - 2{x^2} + 3.\)

B. \(y = {x^4} - 2{x^2} - 3.\)

C. \(y =  - {x^4} + 2{x^2} - 3.\)

D. \(y = {x^3} - 3{x^2} - 3.\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 6:

Cho đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + t\\ y = 1 + t\\ z = 2 + 2t \end{array} \right.\left( {t \in R} \right)\). Phương trình chính tắc của đường thẳng d là:

A. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{2}\)

B. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z + 2}}{2}\)

C. \(\frac{{x + 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 4}}{2}\)

D. \(\frac{{x - 1}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z - 2}}{2}\)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
Thông tin thêm
  • 35 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh