Câu hỏi: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

318 Lượt xem
18/11/2021
4.2 18 Đánh giá

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1), đường thẳng \(d:\frac{{x - 2}}{1} = \frac{y}{3} = \frac{{z + 2}}{2}\) và mặt phẳng (P):2x + y - z + 1 = 0. Đường thẳng đi qua A cắt đường thẳng d và song song với (P) có phương trình là:

A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{{ - 5}}\)

B. \(\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 9}}\)

C. \(\frac{{x - 1}}{9} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 5}}\)

D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{5}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z + 3 - 5i = 0\). Giá trị biểu thức \(A = z.\overline z \) là

A. \(\frac{{\sqrt {170} }}{5}.\)

B. \(\frac{{170}}{5}.\)

C. \(\sqrt {\frac{{170}}{5}} .\)

D. \(\frac{{170}}{{25}}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3; - 1;1} \right),B\left( {1;2; - 1} \right)\). Mặt cầu có tâm A và đi qua điểm B có phương trình là:

A. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 15\)

B. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 17\)

C. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 17\)

D. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 15\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta  = {b^2} - 4ac\). Nếu \(\Delta  < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?

A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta  }}{{2a}}\)

B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta  \right|} }}{{2a}}\)

D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta  \right|} }}{a}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh