Câu hỏi: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

294 Lượt xem
18/11/2021
4.2 18 Đánh giá

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(1;-2;5) và vuông góc với mặt phẳng \((\alpha ):4x - 3y + 2z + 5 = 0\) là:

A. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)

B. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)

C. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{3} = \frac{{z - 5}}{2}\)

D. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{{ - 2}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Tìm công thức sai

A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)

B. \(\int\limits_a^b {f\left( x \right)dx =  - \int\limits_b^a {f(x)dx} } .\)

C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)

D. \(\int\limits_a^a {f(x)dx = 0} \)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh