Câu hỏi: Tìm cặp số thực (x;y) thỏa mãn điều kiện: \((x + y) + (3x + y)i = (3 - x) + (2y + 1)i\)

237 Lượt xem
18/11/2021
4.2 18 Đánh giá

A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)

B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)

C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)

D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x\) và y = x bằng

A. \(\frac{{13}}{4}.\)

B. \(\frac{{7}}{4}.\)

C. \(\frac{{9}}{4}.\)

D. \(\frac{{9}}{2}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh