Câu hỏi:
Tập nghiệm của bất phương trình \({5^{2x + 1}} - {26.5^x} + 5 > 0\) là:
A. (-1;1)
B. \(\left( { - \infty ; - 1} \right)\)
C. \(\left( {1; + \infty } \right)\)
D. \(\left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\)
Câu 1: Thể tích hình hộp chữ nhật có độ dài ba kích thước lần lượt là 2,3,5 bằng
A. 30
B. 10
C. 15
D. 20
05/11/2021 0 Lượt xem
Câu 2: Cho hàm số y = f(x) có bảng biến thiên như sau:
6184b99745f34.png)
Hàm số đã cho đạt cực tiểu tại
6184b99745f34.png)
A. x = -2
B. x = 2
C. x = -1
D. x = 1
05/11/2021 0 Lượt xem
Câu 3: Cho hàm số \(f\left( x \right) = \sqrt {{{\log }_2}\left( {3x + 4} \right)} \). Tập hợp nào sau đây là tập xác định của f(x) là
A. \(D = \left( { - 1; + \infty } \right)\)
B. \(D = \left( { - \frac{4}{3}; + \infty } \right)\)
C. \(D = \left[ { - 1; + \infty } \right)\)
D. \(D = \left[ {1; + \infty } \right)\)
05/11/2021 0 Lượt xem
Câu 4: Gọi M, N lần lượt là điểm biểu diễn của hai nghiệm phức của phương trình \({z^2} - 4z + 9 = 0\). Tính độ dài MN.
A. \(MN = 2\sqrt 5 \)
B. MN = 5
C. \(MN = 3\sqrt 5 \)
D. MN = 4
05/11/2021 0 Lượt xem
Câu 5: Một tổ có 5 học sinh nam và 7 học sinh nữ. Số cách bầu ra 2 bạn giữ hai chức vụ khác nhau là
A. \(C_{12}^2\)
B. \(A_{12}^2\)
C. 122
D. 212
05/11/2021 0 Lượt xem
Câu 6: Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
05/11/2021 0 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 286
- 50
-
91 người đang thi
- 1.3K
- 122
- 50
-
73 người đang thi
- 1.1K
- 75
- 50
-
14 người đang thi
- 956
- 35
- 50
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận